Inverse Functions and Logarithms

A function assigns an output \(y = f(x) \) to each input \(x \).

A one-to-one function has different outputs \(y \) for different inputs \(x \).

For the inverse function the input is \(y \) and the output is \(x = f^{-1}(y) \).

Example: If \(y = f(x) = x^5 \) then \(x = f^{-1}(y) = y^{\frac{1}{5}} \).

KEY: If \(y = ax + b \) then solve for \(x = \frac{y - b}{a} \) = inverse function.

Notice that \(x = f^{-1}(f(x)) \) and \(y = f(f^{-1}(y)) \).

The chain rule will connect the derivatives of \(f^{-1} \) and \(f \).

The great function of calculus is \(y = e^x \).

Its inverse function is the “natural logarithm” \(x = \ln y \).

Remember that \(x \) is the exponent in \(y = e^x \).

The rule \(e^x e^x = e^{x+x} \) tells us that \(\ln(yY) = \ln y + \ln Y \).

Add logarithms because you add exponents: \(\ln(e^2 e^3) = 5 \).

\((e^x)^n = e^{nx} \) (multiply exponent) tells us that \(\ln(y^n) = n \ln y \).

We can change from base \(e \) to base 10: New function \(y = 10^x \).

The inverse function is the logarithm to base 10. Call it log: \(x = \log y \).

Then \(\log 100 = 2 \) and \(\log \frac{1}{100} = -2 \) and \(\log 1 = 0 \).

We will soon find the beautiful derivative of \(\ln y \): \(\frac{d}{dy} (\ln y) = \frac{1}{y} \).

You can change letters to write that as \(\frac{d}{dx} (\ln x) = \frac{1}{x} \).
Inverse Functions and Logarithms

Practice Questions

1. What is \(x = f^{-1}(y) \) if \(y = 50x \) ?
2. What is \(x = f^{-1}(y) \) if \(y = x^4 \) ? Why do we keep \(x \geq 0 \) ?
3. Draw a graph of an increasing function \(y = f(x) \). This has different outputs \(y \) for different \(x \). Flip the graph (switch the axes) to see \(x = f^{-1}(y) \)
4. This graph has the same \(y \) from two \(x \)'s. There is no \(f^{-1}(y) \)

5. The natural logarithm of \(y = 1/e \) is \(\ln(e^{-1}) = ? \) What is \(\ln(\sqrt{e}) \) ?
6. The natural logarithm of \(y = 1 \) is \(\ln 1 = ? \) and also base 10 has \(\log 1 = ? \)
7. The natural logarithm of \((e^2)^{50} \) is ? The base 10 logarithm of \((10^2)^{50} \) is ?
8. I believe that \(\ln y = (\ln 10)(\log y) \) because we can write \(y \) in two ways \(y = e^{\ln y} \) and also \(y = 10^{\log y} = e^{(\ln 10)(\log y)} \). Explain those last steps.
9. Change from base \(e \) and base 10 to base 2. Now \(y = 2^x \) means \(x = \log_2 y \). What are \(\log_2 32 \) and \(\log_2 2 \)? Why is \(\log_2(e) > 1 \) ?