Linear Approximation and Newton’s Method

Start at \(x = a \) with known \(f(a) \) = height and \(f'(a) \) = slope

KEY IDEA \(f'(a) \approx \frac{f(x) - f(a)}{x - a} \) when \(x \) is near \(a \)

Tangent line has slope \(f'(a) \)
Solve for \(f(x) \)
\[f(x) \approx f(a) + (x - a) f'(a) \]

\(\approx \) means “approximately”
curve \(\approx \) line near \(x = a \)

Examples of linear approximation to \(f(x) \)

1. \(f(x) = e^x \) \(f(0) = e^0 = 1 \) and \(f'(0) = e^0 = 1 \) are known at \(a = 0 \)
 Follow the tangent line \(e^x \approx 1 + (x - 0)1 = 1 + x \)
 \(1 + x \) is the linear part of the series for \(e^x \)

2. \(f(x) = x^{10} \) and \(f'(x) = 10x^9 \) \(f(1) = 1 \) and \(f'(1) = 10 \) known at \(a = 1 \)
 Follow the tangent line \(x^{10} \approx 1 + (x - 1)10 \) near \(x = 1 \)
 Take \(x = 1.1 \) \((1.1)^{10} \) is approximately \(1 + 1 = 2 \)

Newton’s Method (looking for \(x \) to nearly solve \(f(x) = 0 \))

Go back to \(f'(a) \approx \frac{f(x) - f(a)}{x - a} \)
\(f(a) \) and \(f'(a) \) are again known

Solve for \(x \) when \(f(x) = 0 \)
\[x - a \approx \frac{f(a)}{f'(a)} \] Newton \(x \)
Line crossing near curve crossing
Examples of Newton’s Method

Solve \(f(x) = x^2 - 1.2 = 0 \)

1. \(a = 1 \) gives \(f(a) = 1 - 1.2 = -0.2 \) and \(f'(a) = 2a = 2 \)
 Tangent line hits 0 at \(x = 1 = -\left(\frac{-0.2}{2}\right) \) Newton’s \(x \) will be 1.1

2. For a better \(x \), Newton starts again from that point \(a = 1.1 \)
 Now \(f(a) = 1.1^2 - 1.2 = .01 \) and \(f'(a) = 2a = 2.2 \)
 The new tangent line has \(x = 1.1 = \frac{0.1}{2.2} \) For this \(x \), \(x^2 \) is very close to 1.2

Practice Questions

1. The graph of \(y = f(a) + (x - a)f'(a) \) is a straight _____
 At \(x = a \) the height is \(y = _____ \)
 At \(x = a \) the slope is \(\frac{dy}{dx} = _____ \)
 This graph is t _____ t to the graph of \(f(x) \) at \(x = a \)
 For \(f(x) = x^2 \) at \(a = 3 \) this linear approximation is \(y = _____ \)

2. \(y = f(a) + (x - a)f'(a) \) has \(y = 0 \) when \(x - a = _____ \)
 Instead of the curve \(f(x) \) crossing 0, Newton has tangent line \(y \) crossing 0
 \(f(x) = x^3 - 8.12 \) at \(a = 2 \) has \(f(a) = _____ \) and \(f'(a) = 3a^2 = _____ \)
 Newton’s method gives \(x - 2 = \frac{f(a)}{f'(a)} = _____ \)
 This Newton \(x = 2.01 \) nearly has \(x^3 = 8.12 \). It actually has \((2.01)^3 = _____ \).