Practice Questions

1. What functions $y(t)$ have the constant derivative $s(t) = 7$?
2. What is the area from 0 to t under the graph of $s(t) = 7$?
3. From $t = 0$ to 2, find the integral $\int_{0}^{2} 7 \, dt = \ldots$.
4. What function $y(t)$ has the derivative $s(t) = 7 + 6t$?
5. From $t = 0$ to 2, find area = integral $\int_{0}^{2} (7 + 6t) \, dt$.
6. At this instant $t = 2$, what is $\frac{d}{dt}(\text{area})$?

7. From 0 to t, the area under the curve $s = e^t$ IS NOT $y = e^t$. If t is small, the area must be small. But $t = 0$ has $y = e^0 = 1$.
8. From 0 to t, the correct area under $s = e^t$ is $y = e^t - 1$.

The slope $\frac{dy}{dt}$ is \ldots and now $y(0) = \ldots$
9. Notice y_0 in $(y_1 - y_0) + (y_2 - y_1) + (y_3 - y_2) = \ldots$.

The sum of $\Delta y = \frac{\Delta y}{\Delta t} \Delta t$ becomes the integral of $\frac{dy}{dt} \, dt$.

The area under $s(t)$ from 0 to t becomes $y(t) - y(0)$.