Calculus Revisited
Part 1
A Self-Study Course

Lecture Notes

Center for Advanced Engineering Study

Herbert I. Gross

Massachusetts Institute of Technology
CALCULUS REVISITED
PART 1
A Self-Study Course

LECTURE NOTES

Herbert I. Gross

Center for Advanced Engineering Study
Massachusetts Institute of Technology
Table of Contents

Block I: Sets, Functions, and Limits
0.000 Preface
1.010 Analytic Geometry
1.020 Functions
1.025 Inverse Functions
1.030 Derivatives and Limits
1.040 Limits: A More Rigorous Approach
1.060 Mathematical Induction

Block II: Differentiation
2.010 Derivatives of Some Simple Functions
2.020 Approximations and Infinitesimals
2.030 Composite Functions and the Chain Rule
2.040 Differentiation of Inverse Functions
2.045 Implicit Differentiation
2.050 Continuity
2.060 Curve Plotting
2.070 Maxima-Minima
2.080 Rolle's Theorem and its Consequences
2.090 Inverse Differentiation
2.100 The "Definite" Indefinite Integral
Block III: The Circular Functions
3.010 Circular Functions
3.020 Inverse Circular Functions

Block IV: The Definite Integral
4.010 2-dimensional Area
4.020 Marriage of Differential & Integral Calculus
4.030 3-dimensional Area (Volume)
4.040 1-dimensional Area (Arc Length)

Block V: Transcendental Functions
5.010 Logarithms without Exponents
5.020 Inverse Logarithms
5.030 What a Difference a Sign Makes
5.040 Inverse Hyperbolic Functions

Block VI: More Integration Techniques
6.010 Some Basic Recipes
6.020 Partial Fractions
6.030 Integration by Parts
6.040 Improper Integrals
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.010</td>
<td>Many Versus Infinite</td>
</tr>
<tr>
<td>7.020</td>
<td>Positive Series</td>
</tr>
<tr>
<td>7.030</td>
<td>Absolute Convergence</td>
</tr>
<tr>
<td>7.040</td>
<td>Polynomial Approximations</td>
</tr>
<tr>
<td>7.050</td>
<td>Uniform Convergence</td>
</tr>
<tr>
<td>7.060</td>
<td>Uniform Convergence of Series</td>
</tr>
</tbody>
</table>
Area under a Curve

Physical Interpretation
� = e², 0 ≤ e ≤ 1

Area distance < ⁿ²

Zero's Paradox
Tortoise and the Hare

(a) Discrete Limit
Area is defined as an "endless" sum of areas of rectangles.
How big is an "infinite" sum?

1 + \(\frac{1}{2}\) + \(\frac{1}{4}\) + \(\frac{1}{8}\) + \(\frac{1}{16}\) + ... = 2

\(\frac{x}{2}\) = \(\frac{1}{2}\)
\(\frac{x}{2}\) = \(x - 1\)
\(x = 2\)

Areas and Rates of Change

Tangent line passes through "two consecutive points" on the curve

Two-lim Concepts

Functions (Sets)
Limits
Derivatives (Rate of change)
Integrals (Area under curves)

Applications
More "elaborate" functions
More sophisticated techniques
Infinite Series
1.010 Analytic Geometry

37 min.

Analytic Geometry

Profit

- **Points and Ordered Pairs**

- **Graphs:**
 - Graph showing ordered pairs (x, y) and their relationship to the x-axis and y-axis.

- **Equations and Formulas:**
 - \(a = 16c^2 \)
 - \(V = \pi r^2 h \)
 - \(C(h) = 2\pi rh \)
 - \((3, 2) \rightarrow 12\pi \)
 - \((3, 2) \rightarrow 18\pi \)

- **Inequality:**
 - \(a^2 + 2ab + b^2 \) > \(a^2 + b^2 + b^2 \)
\[S = \{(x, y) : x^2 + y^2 = 25\} \]

- \((3, 4) \in S\)
- \((1, 3) \notin S\)

Straight line

- \(m = 3\)
- \(y = 3x - 1\)

Interpolation

- \(\log_2 3 = 0.301\)
- \(\log_4 0.602 = 0.417\)

Equations of lines

- Line \((l)\) through \((2, 5)\) and \((0, -1)\)

Simultaneous equations

\[\begin{align*}
 y &= 5x - 1 \\
 5 &= 2x + 1
\end{align*} \]

- \(3x - 1 = 2 + 1\)
- \(2x = 2\)
- \(x = 1\)
- \((1, 2)\)

Example:

- \(m = 3\)
- \(y = 3x - 1\)
Functions:
\[f: A \to B \text{ means that } f \text{ is a rule which assigns to each } a \in A \text{ an element } b \in B. \]

A = domain of \(f \)

\[f = \{ (a, b) | a \in A, b \in B \} \]

B = range of \(f \)

\[f(A) = \{ b | \exists a \in A : f(a) = b \} \]

C = image of \(f \)

\[f(A) = f(A) \]

Onto Functions

Range = Image

Example:

\[A = \{1, 2, 3\} \]

\[f(a) = 4a, a \in A \]

\[f(1) = 4, f(2) = 8 \]

\[f(3) = 12 \]

\[B = \{4, 8, 12\} \]

\[f: A \to B \]

One-to-One Functions

\[f(a_1) = f(a_2) \Rightarrow a_1 = a_2 \]

Real Variable

\[s = 16t^2 \]

\[v = \frac{ds}{dt} = 32t \]

\[s = \begin{cases} 0, & t \leq 0 \\ 16t^2 - 0.36, & 0 < t \leq \frac{1}{4} \\ 4.00, & t > \frac{1}{4} \end{cases} \]
Inverse Functions

"Switch in Emphasis"

Example

\[y = f(x); \quad x = f'(y) \]

\[y = \frac{1}{x}; \quad b = \frac{5}{2} \]

\[y = \sin x; \quad x = \sin y \]

\[f(x) = \frac{1}{x}; \quad f'(x) = \frac{1}{x^2} \]

\[f(x) = \ln x; \quad f'(x) = \frac{1}{x} \]

\[f(x) = \sqrt{x}; \quad f'(x) = \frac{1}{2\sqrt{x}} \]

\[f(x) = e^x; \quad f'(x) = e^x \]

\[f(x) = \ln x; \quad f'(x) = \frac{1}{x} \]

\[f(x) = \cos x; \quad f'(x) = -\sin x \]

\[f(x) = \tan x; \quad f'(x) = \sec^2 x \]

\[f(x) = \sec x; \quad f'(x) = \sec x \tan x \]

\[f(x) = \csc x; \quad f'(x) = -\csc x \cot x \]

\[f(x) = \cot x; \quad f'(x) = -\csc^2 x \]

\[f(x) = \sin^{-1} x; \quad f'(x) = \frac{1}{\sqrt{1-x^2}} \]

\[f(x) = \cos^{-1} x; \quad f'(x) = -\frac{1}{\sqrt{1-x^2}} \]

\[f(x) = \tan^{-1} x; \quad f'(x) = \frac{1}{1+x^2} \]

\[f(x) = \sec^{-1} x; \quad f'(x) = \frac{1}{x\sqrt{x^2-1}} \]

\[f(x) = \csc^{-1} x; \quad f'(x) = -\frac{1}{x\sqrt{x^2-1}} \]

\[f(x) = \cot^{-1} x; \quad f'(x) = -\frac{1}{1+x^2} \]

[Graphs and diagrams showing various functions and their derivatives]
Derivatives and Limits

How fast does the ball fall when \(t = 1 \)?

Ave speed from \(t = 1 \) to \(t = 2 \):

\[
\frac{A(2) - A(1)}{2-1} = \frac{64 - 16}{1} = 48 \text{ ft/sec}
\]

Ave speed from \(t = 1 \) to \(t = 1+t \):

\[
\frac{A(1+t) - A(1)}{1+t - 1} = \frac{16(1+t)^3 - 16}{t} = \frac{32t + 16t^2}{t}
\]

"Appears" that speed is 32 ft/sec when \(t = 1 \)

I.e.,

\[
\lim_{h \to 0} \frac{A(t+h) - A(t)}{h} = \lim_{h \to 0} \frac{32t + 16t^2}{h} = \frac{32t + 16t^2}{h}
\]

By this approach,

if \(s = 16t^2 \) then at

time \(t = t \), \(v = 32t \),

or: \(u = 32t \),

where (instantaneous)

speed has been defined

as a limit of average

speeds.
\[f(x + h) - f(x) \]

\[\lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \]

\[f(x) = \lim_{x \to a} \frac{x^2 - a^2}{x - a} \]

\[\lim_{x \to a} \frac{x^2 - a^2}{x - a} = \lim_{x \to a} \frac{(x - a)(x + a)}{x - a} \]

\[x^2 - a^2 = (x - a)(x + a) \]

\[\lim_{x \to a} \frac{x^2 - a^2}{x - a} = \lim_{x \to a} (x + a) = a + a = 2a \]

\[\lim_{x \to a} f(x) = L \text{ means } \lim_{x \to a} \frac{f(x) - L}{x - a} = 0 \]

\[\text{Given } \epsilon > 0 \text{ we can find } S > 0 \text{ such that } 0 < |x - a| < S \Rightarrow |f(x) - L| < \epsilon \]

\[\lim_{x \to a} \frac{x^2 - 2x - 3}{x^2 - x + 3} = \frac{1}{2} \]

\[\text{If } x \to a, \text{ then } x^2 \to a^2 \]

\[\left(1 + \frac{\sqrt{c}}{c} \right)^2 - 2 \left(1 + \frac{\sqrt{c}}{c} \right) = \left(1 + \frac{\sqrt{c}}{c} + \frac{\sqrt{c}}{c} \right) - 2 \left(1 + \frac{\sqrt{c}}{c} \right) = \frac{3c}{c} = 3 \epsilon \]
1.040 Limits: A More Rigorous Approach

46 min.

- **Theorem**
 \[
 \lim_{x \to a} f(x) = L \\
 \text{for each } \epsilon > 0, \text{can find } \delta > 0 \text{ such that} \\
 0 < |x - a| < \delta \implies |f(x) - L| < \epsilon
 \]

- **Theorem**
 \[
 \lim_{x \to a} c = c \\
 \text{let } f(x) = c \\
 \text{then } \lim_{x \to a} f(x) = c \\
 \text{Given } \epsilon > 0 \text{ we must find } \delta > 0 \text{ such that} \\
 0 < |x - a| < \delta \implies |c - c| < \epsilon
 \]

- **Theorem**
 \[
 \lim_{x \to a} x = a \\
 \text{there exists } \delta > 0 \text{ such that} \\
 0 < |x - a| < \delta \implies |x - a| < \epsilon
 \]

- **Theorem**
 \[
 \lim_{x \to a} \left[f(x) + g(x) \right] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) \\
 \text{let } h(x) = f(x) + g(x) \\
 \text{To prove } \lim_{x \to a} h(x) = L_1 + L_2
 \]

\[\text{for each } \epsilon > 0, \text{can find } \delta > 0 \text{ such that} \\
0 < |x - a| < \delta \implies |h(x) - (L_1 + L_2)| < \epsilon\]
Given $\epsilon > 0$, let $\delta = \frac{\epsilon}{4}$. Can find $\delta > 0$ such that

$$0 < x - \delta \leq x + \delta \rightarrow |f(x) - L_1 - L_2| \leq \epsilon \left| \left(\frac{1}{x^2} - \frac{1}{x^3} \right) \right|$$

Let $\delta = \min \{ \delta_1, \delta_2 \}$

$$0 < x - \delta \leq x + \delta \rightarrow \left| \frac{f(x) - L_1}{x^3} \right| \leq \epsilon \left| \frac{1}{x^2} \right|$$

$$\lim_{x \to 3} f(x) = L_1$$

Example:

$$\left| \lim_{x \to 3} x^2 - 7x + 10 \right| = \left| \lim_{x \to 3} (x-3)(x-1) \right|$$

$$\lim_{x \to 3} \left(x^2 - 7x + 10 \right) = \lim_{x \to 3} \left(x-3 \right) \left(x-1 \right) = 0$$

$$\lim_{x \to 3} (x-3) = 0$$

$$(3)^2 - 7(3) + 10 = 0$$

$$30$$
Mathematical Induction

\[
\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)
\]

How about

\[
\lim_{x \to a} [f(x) + g(x) + h(x)]
\]

\[
\lim_{x \to a} f(x) + \lim_{x \to a} g(x) + \lim_{x \to a} h(x)
\]

\[
\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \frac{4}{5} = 10
\]

\[
\frac{2}{3} \div 5 = \frac{1}{15}
\]

odd + odd = ? even

Positive - Positive = ?

3 - 5 = ?
Suppose
\[\lim_{x \to a} f(x) + g(x) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) \]
\[\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) \]

Mathematical Induction.
1. Show Conjecture True For \(n = 1 \)
2. Prove that truth for \(n = k \) implies the truth for \(n = k + 1 \)

\[
\begin{align*}
1 + 2 + \cdots + k &= \frac{n(n+1)}{2} \\
1 + 2 + \cdots + k + k + 1 &= \frac{k(k+1)}{2} + k + 1 \\
&= \frac{k(k+1)+2(k+1)}{2} \\
&= \frac{(k+1)(k+2)}{2} \\
\end{align*}
\]

Prime Factors

\[
P(41) = \text{prime}
\]

\[
\begin{align*}
P(41) &= 41 - 41 + 41 \\
&= 1 \times 41 \times 41 \\
\end{align*}
\]

Unique Factorization Theorem

- 2 = 2
- 3 = 3
- 4 = 2 \times 2
- 5 = 5
- 6 = 2 \times 3
- 7 = 7
- 8 = 2 \times 2 \times 2
- 9 = 3 \times 3
- 10 = 2 \times 5
- 11 = 11
- 12 = 2 \times 2 \times 3

Numbers factors considerably different than \(n \)

\[
\begin{align*}
59 &= 2 \times 3 \times 5 \times 6 \\
61 &= 1 \times 2 \times 3 \times 5 \times 6 \\
\end{align*}
\]
2.010 Derivatives of Some Simple Functions

Derivatives of Some Simple Functions

\[
f'(x) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}
\]

Generalization

Let \(f(x) = x^n \)

\[
f(x+\Delta x) - f(x) = (x+\Delta x)^n - x^n = n x^{n-1} \Delta x + O(\Delta x^2)
\]

\[
f'(x) = n x^{n-1}
\]

Proof

\[
h(x+\Delta x) = f(x+\Delta x) + g(x+\Delta x)
\]

Define \(h \) by

\[
h(x) = f(x) + g(x)
\]

Then:

\[
h(x) = f(x) + g(x)
\]

\[
.
\]

\[
h'(x) = f'(x) + g'(x)
\]
In fact:

\[
h(x) = \frac{f(x)g(x)}{x}
\]

then:

\[
h(x) = \frac{f(x)g(x)}{x} - \frac{f(x)g(x)}{x}
\]

\[
= f(x)g(x) - \frac{g(x)}{x} - f(x)g(x)
\]

\[
= f(x)g(x) - \frac{g(x)}{x} - f(x)g(x)
\]

Summary

The basic definition:

\[
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
\]

never changes. But it can be manipulated to yield "convenient" "recipes".

Note:

It is not true always that \(\lim_{x \to a} \frac{g(x)}{x} = \frac{g(a)}{a} \)

For example, let \(g(x) = \frac{x^2 - 1}{x - 1} \)

For a quotient:

we can show that if \(h(x) = \frac{g(x)}{x} \), then:

\[
\lim_{x \to a} \frac{g(x)}{x} = \lim_{x \to a} \frac{g(x) - g(a)}{x - a}
\]

In our present case:

\[
\lim_{x \to a} \frac{g(x)}{x} = \lim_{x \to a} \frac{g(x) - g(a)}{x - a}
\]

Example:

\(f(x) = \frac{1}{x^n} \), \(n \) positive integer

\[
\lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{1}{x} = \frac{1}{x}
\]

\[
f'(x) = x^{n-1} \frac{d}{dx}
\]

\[
\lim_{x \to 0} f'(x) = \lim_{x \to 0} x^{n-1} = 0
\]

\[
\lim_{x \to a} g(x) = g(a)
\]
Approximations and Infinitesimals

\[y = x^2 \]

\[\Delta y = (x + \Delta x)^2 - x^2 = 2x \Delta x + \Delta x^2 \]

\[\Delta y_{\text{inf}} = 2x \Delta x \]

\[\Delta y_{\text{def}} = \Delta y - \Delta y_{\text{inf}} = \Delta x^2 \]

\[\frac{\Delta y}{\Delta x} = 2x + \Delta x \]

\[\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{dy}{dx} = 2x \]

\[\frac{\Delta y}{\Delta x} = \frac{dy}{dx} + \frac{\Delta y}{\Delta x} \]

\[\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = 0 \]

\[y = x^2 \]

\[\Delta y = (x + \Delta x)^2 - x^2 = 2x \Delta x + \Delta x^2 \]

\[\Delta y_{\text{inf}} = 2x \Delta x \]

\[\Delta y_{\text{def}} = \Delta y - \Delta y_{\text{inf}} = \Delta x^2 \]

\[\frac{\Delta y}{\Delta x} = 2x + \Delta x \]

\[\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{dy}{dx} = 2x \]

\[\frac{\Delta y}{\Delta x} = \frac{dy}{dx} + \frac{\Delta y}{\Delta x} \]

\[\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = 0 \]
\[\Delta y = \frac{dy}{dx} \Delta x + k \Delta y \]

\[\Delta y = \Delta \frac{dy}{dx} (a_2) \]

where \(\lim_{k \to 0} \frac{dy}{dx} \)

Example:
\[y = x^2 \]
\[\frac{dy}{dx} = 2x \]
\[\Delta y = 3 \Delta x \]
\[\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = 5 \]

\[f(x_0 + \Delta x) - f(x) \]

where \(\lim_{\Delta x \to 0} k \Delta x \)

\[\frac{dy}{dx} \]

is not \(\frac{y_0}{x_0} \)

is one symbol. It is not \(\frac{dy}{dx} \)
Composite Functions and the Chain Rule

\[
\frac{dy}{dt} = \left(\frac{dy}{dx} \right) \left(\frac{dx}{dt} \right)
\]

\[
\lim_{k \to 0} \frac{\Delta y}{\Delta x} = \frac{dy}{dx}
\]

Example

Find \(\frac{dy}{dx} \) if

\[
y = z^2 \quad \text{and} \quad z = x^2 + 1
\]

\[
\frac{dy}{dx} = \frac{dy}{dz} \cdot \frac{dz}{dx} = 2z \cdot 2x = 2x^2 + 2
\]

\[
\frac{dy}{dt} = \frac{dy}{dz} \cdot \frac{dz}{dt} = 2z \cdot \frac{dx}{dt} = 2x \cdot \frac{dx}{dt}
\]

\[
\frac{dy}{dt} = \frac{dy}{dz} \cdot \frac{dz}{dt} = 2z \cdot \frac{dx}{dt}
\]
Differentiation of Inverse Functions

Find \(\frac{dy}{dx} \) if \(y = \frac{1}{x} \)

\[\frac{dy}{dx} = \frac{-1}{x^2} \]
1. Proof vs Intuition

Statement: Reason

2. How likely is it that $f(x) = \lim_{x \to a} f(x)$ is 1 - 1?

Local vs Global

$f'(c) \neq 0$
Implicit Differentiation

\[\frac{dy}{dx} \text{ is } \frac{f'(x)}{f(x)} \]

\[x^2 + y^2 = 25 \]

Assume \(y > 0 \)

such that

\[x + y = 25 \]

\[2x + 2y \frac{dy}{dx} = 0 \]

\[\frac{dy}{dx} = -\frac{x}{y} \]

\[y_1(x) = \sqrt{25 - x^2} \]

\[y_2(x) = -\sqrt{25 - x^2} \]

\[\frac{dy_1}{dx} = \frac{x}{\sqrt{25 - x^2}} \]

\[\frac{dy_2}{dx} = -\frac{x}{\sqrt{25 - x^2}} \]

\[\frac{dy}{dx} = \frac{1}{y} \left(\frac{x}{\sqrt{25 - x^2}} - \frac{x}{\sqrt{25 - x^2}} \right) \]

\[\frac{dy}{dx} = \frac{x}{y} \]
Aside:

\[y = 2x + 8 \quad \text{if} \quad x \text{ is an integer} \]
\[y^3 = z \]

\[8y^3 + 6x^2y^2 + 4x^2y + 6y^2x = 0 \]
\[\frac{dy}{dx} = -\frac{y(x^2 + 6y)}{x^2 + 6y^3} \]
\[\frac{dx}{dy} = -\frac{x(y^2 + 6x)}{y^2 + 6x^3} \]
\[4y^3 + 6x^2y = 0 \]
\[(x^3 + y^3 + 6) = 0 \]

Find the equation of the line tangent to \(x^2 + xy + y^2 = 3 \) at the point \((1,1)\).

\[2x + 2y + y^2 = 6 \]
\[2x + y = 3 \]
\[y = 3 - 2x \]
\[z = x^2 + 6y + 3 \]

\[\begin{align*}
\text{At} (1,1), & \quad \frac{dz}{dt} = 5 \\
2x + 2y + y^2 &= 6 \\
2x + y &= 3 \\
y &= 3 - 2x \\
\end{align*} \]

Related Rates

A particle moves along the curve \(x^2 + y^2 = 25 \) \((x, y \text{ in feet})\).

At \((3,4)\), \(\frac{dx}{dt} = 8 \text{ feet/sec} \).

Find \(\frac{dy}{dt} \).

\[\begin{align*}
\frac{dx}{dt} &= -\frac{3}{10} \text{ ft/sec} \\
\frac{dy}{dt} &= -6 \text{ ft/sec} \\
\end{align*} \]

Assume \(z \) near \((2, 0)\) and \(y \) are differentiable functions of \(t \). Then:

\[x^2 + y^2 = 25 \to \]
\[2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 0 \]
\[\frac{dy}{dt} = -\frac{x}{y} \frac{dx}{dt} \]

\[-6 \text{ ft/sec} \]
Continuity

Does \(\lim_{x \to a} f(x) = f(a) \) ?

(i) \(f(a) \) must be defined. E.g., let \(f(x) = \frac{x^2 - 1}{x - 1} \).

Then:
\[
\lim_{x \to 1} f(x) = 2
\]

But \(f(1) = \frac{0}{0} \) which is undefined.

Pictorially:
\[
\begin{align*}
&\frac{x^2 - 1}{x - 1} = x + 1 \text{ except when } x = 1 \\
&g(x) = \begin{cases}
\frac{x^2 - 1}{x - 1} & \text{if } x \neq 1 \\
2 & \text{if } x = 1
\end{cases}
\end{align*}
\]

(2) \(f(x) \) is "near" \(f(a) \)
when \(x \) is near \(a \).
E.g., curve \(y = f(x) \) is "unbroken" in a neighborhood of \(x = a \).

Definition:

(i) \(f \) is called continuous at \(x = a \) if \(\lim_{x \to a} f(x) = f(a) \).

(ii) \(f \) is called continuous on the interval \(I \) if \(\lim_{x \to a} f(x) = f(a) \)
for each \(a \) in \(I \).
Geometric Ideas

1. Cont. functions assume their max. and min. values on any closed interval.

 ![Graph of a function with a max. and min. value indicated.]

2. \(f(x) = \frac{1}{x^2} \) at \(x = 0 \).

Analytic Ideas

1. \(f, g \) cont. at \(x = a \).
 \[h(x) = f(x) + g(x) \]
 \[\lim_{x \to a} h(x) = \lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = h(a) + g(a) \]

2. Sum of two continuous functions is a continuous function.

Intermediate Value Theorem

If \(f \) cont. on \([a, b] \), \(f(a) < f(b) \)

Let \(m \) be such that \(f(a) < m < f(b) \)

Then we can find \(c \in (a, b) \)

such that \(f(c) = m \).
2.060 Curve Plotting 31 min.

Curve Plotting
(with and without
calculation)

$$f(x) = f(-x)$$

Aside:
Even and Odd Functions

$$f(x) = f(-x) \rightarrow f \text{ even}$$

$$f(x) = -f(-x) \rightarrow f \text{ odd}$$

Examples:

$$y = x^2 + 2$$
$$y = (x^2) + 2$$
$$f(x) = f(-x)$$

$$y = x^3 + x$$
$$y = (-x^3) + x$$
$$f(x) = -f(-x)$$

$$f(x) = \frac{f(x) + f(-x)}{2} \text{ even}$$
$$f(x) = \frac{f(x) - f(-x)}{2} \text{ odd}$$
Stationary Points:
\[
\frac{df}{dx} = 0 \\
\{ f'(x) = 0 \} \\
x = x_1
\]

Physical Interpretation
\[
\begin{align*}
A &= 160t - 16t^2 \\
\theta_{\text{max}} &= 7 \\
\omega &= 0
\end{align*}
\]
Maxima-Minima

Fundamental Theorem:
Suppose \(f(c) \geq f(x) \) for all \(x \neq c \) and suppose \(f'(c) \) exists. Then \(f'(c) = 0 \).

(a) Beware of False Converse:
\[f(x) = x^2, \quad \text{dom} f = \mathbb{R} \]
\[f'(x) = 2x \]
\[f'(0) = 0 \]
\[f'(c) \] does not exist.

(b) Beware of Endpoints:
\[f(x) = x^2, \quad \text{dom} f = [2, 3] \]
\[f'(x) = 2x \]
\[f'(0) = 0 \]
\[f'(c) \] does not exist.

If \(f \) has a max or min, it does not occur in \((0, 1)\).
Graphical Interpretation:

- \(y = x^2 \)
- \(x > 0 \)
- \(x = 0 \)
- \(V = \pi x^2 \)

\(x = 2 \)

\(V = \pi xy \)

- \(A_2 = 45 \text{ cm}^2 \)
- \(V_2 = \pi (15)^2 \text{ cm}^3 \)
- \(A_2 = 45 \text{ cm}^2 \)
- \(V_2 = \pi (15)^2 \text{ cm}^3 \)

\(V = \pi (2y) \)

\(\frac{dV}{dx} = 30\pi y \text{ cm}^3/\text{cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(x = 2 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)

\(x = 2 \text{ cm} \)

\(x = 0 \text{ cm} \)

\(x = 1 \text{ cm} \)

\(V = \pi x^2 \text{ cm}^3 \)
Rolle's Theorem and its Consequences

Let f be defined and continuous on $[a, b]$ and differentiable in (a, b). Suppose also $f(a) = f(b) = 0$. Then $f'(c) = 0$ for at least one $c \in (a, b)$.

Cautions:
1. There may be several c.

2. Curve must be smooth.

3. f must be single-valued.
The Mean Value Theorem

Let \(f \) be continuous on \([a, b]\) and differentiable in \((a, b)\). Then there exists a number \(c \in (a, b) \) such that

\[
\frac{f(b) - f(a)}{b - a} = f'(c)
\]

Caution:

Mean Value Theorem Supplies Rigor to Intuition

Examples:

1. \(F(x) = 0 \rightarrow \frac{F(b) - F(a)}{b - a} = F'(c) \)
 - \(F(b) = F(a) = 0 \)
 - \(F'(c) = 0 \)
Inverse Differentiation

\[f'(x) = D(f(x)) \]

\[D(x^2) = 2x \]

Suppose \(D(x^2) = 2x \)

\[f(x) = x \quad \text{constant} \]

\[\therefore f(x) \in \{ x^2 + c \} \]

In general:

Suppose we are given \(f(x) \)

Let \(E(f) = \{ f(x) + c \} \)

\[D^{-1}(f(x)) = 2x \]

So:

\[D'\left(\frac{2x^2}{x^2+1}\right) = \frac{4x(x^2+1)}{(x^2+1)^2} \]

But even if we didn't know this, we would still have

Example: Let \(h(x) = x^2 + \frac{1}{x} \)

\[h'(x) = 2x - \frac{1}{x^2} \]

\[h'(x) = \frac{2}{x^2} - 1 \]

\[h'(x) = \frac{2}{x^2} \]

\[h'(x) = \frac{1}{x^2} \]
Chain Rule

\[
D [f(g(x))] = f'(g(x)) \cdot g'(x)
\]

Example

\[
D (x^2 + 3x) = 2x + 3
\]

Inverse Chain Rule

\[
\frac{d}{dx} \left(\frac{1}{f(x)} \right) = -\frac{f'(x)}{[f(x)]^2}
\]

Example

\[
\frac{d}{dx} \left(\frac{1}{x^2} \right) = -\frac{2}{x^3}
\]

Inverse Function

\[
D (f^{-1}(x)) = \frac{1}{f'(f^{-1}(x))}
\]

Example

\[
D (f^{-1}(x)) = \frac{1}{f'(f^{-1}(x))}
\]

Integration

\[
\int (x^2 + 3x) \, dx = \frac{x^3}{3} + \frac{3x^2}{2} + C
\]

Integration by Parts

\[
\int f(x)g'(x) \, dx = f(x)g(x) - \int f'(x)g(x) \, dx
\]

Example

\[
\int \sin(x) \, dx = -\cos(x) + C
\]
The "Definite" Indefinite Integral

\[D(f(x)) = \int f(x) \, dx \]

\(= \{G(x)/G'(x)\} \)

\(= \{F(x)/F'(x)\} \)

\[f(x) = x^2 \]

\[\frac{d}{dx} x^2 = 2x \]

\[G(x) = \frac{x^3}{3} + C \]

Suppose \(f(x) \rightarrow 30 \)

\[c = \frac{30}{3} \]

\[f(x) = \frac{3}{2} x^2 + \frac{30}{3} \]

\[\frac{dy}{dx} = 2x + \frac{10}{3} \]

Notice that if \(H \) is a function of \(x \)

\[H' = G' \]

\[H(x) = G(x) + C \]

For this case

\[H(a) = G(a) + C \]

\[H(b) = G(b) + C \]

\[H(a) - H(b) = G(a) - G(b) \]

Geometric Interpretation

\[f(x) \]

\[G(x) \]

\[y = f(x) \]

\[x = G(x) \]
Physical Interpretation

\[x(t) = \frac{1}{2} t^2 + \frac{1}{2} \]
\[v(t) = x'(t) = t \]
\[a(t) = v'(t) = 1 \]

Generalization

\[x(t) = \frac{1}{2} t^2 + C \]
\[v(t) = x'(t) + \frac{dx}{dt} \]
\[a(t) = v'(t) = \frac{dx}{dt} \]

\[x(0) = 0, \quad v(0) = \frac{dx}{dt} \]
\[x(t) = \frac{1}{2} t^2 + \frac{1}{2} \]
\[\Delta x(t) = \frac{1}{2} t \]

Once we invent \[\int f(x) \, dx \] to denote \[\{ a(t), G'(t) \} \]

Why not invent \[\int f(x) \, dx \]

\[G(b) - G(a) \]
\[G(b) = \int_a^b f(x) \, dx \]
\[G(a) = \int_a^a f(x) \, dx \]
\[G(b) - G(a) = \int_a^b f(x) \, dx \]

Summary

Suppose \[\int \frac{dx}{dt} \, dt = F(t), \quad a \leq t \leq b \]

Then \[\int_a^b \frac{dx}{dt} \, dt = F(b) - F(a) \]

where \(G' = f \)
Block III: The Circular Functions

3.010 Circular Functions

35 min.
\[f(x) = \sin x \]
\[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \]
\[= \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} \]
\[= \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h - \sin x}{h} \]
\[= \lim_{h \to 0} \frac{\sin x (\cos h - 1) + \cos x \sin h}{h} \]
\[= \cos x \]
\[\lim_{t \to 0} \frac{\sin t}{t} = 1 \]

\[x = \sin kt \]
\[\frac{dx}{dt} = k \cos kt \]
\[\frac{dx}{dt} = -k^2 \sin kt \]
\[d\left(\cos^2 \frac{x}{2}\right) = -2 \cos x \sin x \frac{dx}{dt} \]
\[\int \sin x \cos x \, dx = -\frac{1}{2} \cos^2 x + C \]

\[y = \tan x \]
\[\frac{dy}{dx} = \sec^2 x \]
\[\int \sec^2 x \, dx = \tan x + C \]

\[\frac{dy}{dx} = \cos x \]
\[\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1} x + C \]

\[
\cos \theta = x \\
\sin \theta = \sqrt{1-x^2} \\
\cos \theta \cdot d\theta = -dx \\
\int \frac{1}{\sqrt{1-x^2}} \cos \theta \cdot d\theta = \sin^{-1} x + C \\
B + C = \sin^{-1} x + C
\]

\[
\cos^2 x = \frac{1}{2} - \sin^2 x \\
\sin^2 x = \frac{1}{2} - \cos^2 x \\
\]

\[
\frac{d}{dx}(\cos^2 x) = -2 \sin x \cos x \\
\frac{d}{dx}(\sin^2 x) = 2 \cos x \sin x \\
\]

\[
\frac{d}{dx}(\frac{1}{\sqrt{1-x^2}}) = -\frac{1}{\sqrt{1-x^2}^3} \\
\]

\[
\frac{d}{dx}(\sqrt{1-x^2}) = -\frac{1}{2\sqrt{1-x^2}} \\
\]
Block IV: The Definite Integral

4.010 2-dimensional Area 36 min.

Method of Exhaustion:
Given a region R, we "squeeze it" between two networks of rectangles.

Example:
We wish to determine the area, A_R, of the region R where:

\[
\int_{a}^{b} f(x) \, dx
\]

\[
\begin{align*}
\text{Area} & \quad \text{Integral Calculus} \\
& \quad \text{Bible Calculus} \\
\text{Ancient Egyptians} & \quad \text{140 B.C.} \\
\end{align*}
\]

Known Fact:
(i) $A=bh$, for a rectangle
(ii) R-sum implies $A \geq A_R$
(iii) $R=R_0 + R_k$, then $A_R = A_0 + A_k$

For each n:
\[
L_n = a_k < L_k < U_k
\]
\[
\lim_{n \to \infty} L_n = \lim_{n \to \infty} U_n
\]
\[
L_n = f(a_k) \Delta x_k
\]
\[
U_n = f(b_k) \Delta x_k
\]
\[
L_n = \frac{1}{n} \left(1^2 + 2^2 + \cdots + n^2 \right)
\]
\[
U_n = \frac{1}{n} \left(0^2 + 1^2 + \cdots + (n-1)^2 \right)
\]

\[
\begin{align*}
L_{1000} & \approx 0.3827335 \\
U_{1000} & \approx 0.385333 \quad A_R \approx 0.38
\end{align*}
\]
For each n, $u_n > \frac{1}{2}$
\[
\frac{1}{u_n} = \frac{1}{1 + \frac{1}{2} (u_n - \frac{1}{2})} = \frac{2}{u_n - \frac{1}{2}}
\]
Similarly, v_n

For each n, $\frac{1}{v_n} = \frac{2}{v_n - \frac{1}{2}}$

Generalization

Let f be continuous on $[a, b]$ (and non-decreasing) and define
\[
A(f) = \int_a^b f(x) \, dx
\]

Partition $[a, b]$ into n equal parts, x_0, x_1, \ldots, x_n, and define
\[
A_n = \sum_{i=1}^{n} f(x_i) (x_i - x_{i-1})
\]

Then (1) A_n is a lower sum for f
(2) Let $c_i = (x_i - x_{i-1})/2$
\[
\int_a^b f(x) \, dx = \lim_{n \to \infty} A_n = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) (x_i - x_{i-1})
\]

Trapezoidal Approximations

Definition

4 is called piecewise continuous on $[a, b]$ if f is continuous except at a finite number of points where it has 'jump' discontinuities.
4.020 Marriage of Differential & Integral Calculus 30 min.

First Fundamental Theorem of Integral Calculus

Suppose we know exactly a function G such that $G' = f$. Then $A(x) = G(x) + C$

Since $A(a) = 0$, we have:

$$0 = f(a) G(a) + C$$

Let $h = b - a$

Then:

$$A(b) = f(b) G(b) - G(a)$$

But:

$$A(b) = \lim_{h \to 0} \frac{\Delta A}{\Delta x} = A'(x)$$

That is, we can compute

$$\lim_{h \to 0} \frac{2 \Delta(f(x))}{h}$$

to be use of "inverse" derivates.

Example:

$$\lim_{h \to 0} \frac{2 \Delta(f(x))}{h}$$

Historically, Δ f(x) was "invented" to denote $\ln \frac{x}{0.6}$. Then by the First Fundamental Theorem:

$$\int_0^x f(x) dx = G(x) - G(a), G' = f$$
Second Fundamental Theorem of Integral Calc.

Suppose we want A_x,

\[A_x = \int_1^x f(t) \, dt \]

Then:
\[G(x) = \int_1^x f(t) \, dt \]

But I don't know yet what G is.

In fact, because we can pinpoint A_x, we can construct G such that $G'(x) = \frac{f(x)}{x}$. Namely:

\[G(x) = \int \frac{f(t)}{t} \, dt \]

The graph shows $G(x)$ and $A(x)$ for $x \geq 1$.

In general:
let f be continuous on $[a,b]$, define G by:

\[G(x) = \int_a^x f(t) \, dt \]

Then:
\[G'(x) = f(x) \]

Summary:
(1) First find $A(x)$ allows us to compute $\int_a^b f(x) \, dx$

provided we can find G such that $G' = f$. In this case:
\[\int_a^b f(x) \, dx = G(b) - G(a) \]

(2) Second find $A(x)$ allows us to give f to construct G, such that $G' = f$. Namely:
\[G(x) = \int_a^x f(t) \, dt \]

\[A(x) = \int_a^x f(t) \, dt \]

And we may therefore compute $\ln x$ as an indefinite sum.
Cylindrical Shells

\[V = \pi \int_a^b x f(x) \, dx \]

\[V = \pi \left[\frac{1}{2} (2x^2 - 2^2) \right]_0^2 \]

\[V = \pi \left[\frac{1}{2} (8x^2 - 4) \right]_0^2 \]

\[V = \pi \left[8x^2 - 4 \right]_0^2 \]

\[V = \pi \left[2 \left(\frac{4}{3} \right) \right] \]

\[V = \frac{8\pi}{3} \]

\[\Delta x \approx \frac{1}{n} \]

\[n \approx \frac{1}{\Delta x} \]

\[n \approx \frac{2}{\Delta x} \]

\[f \text{ cont on } [a, b] \]

\[a = x_0 < x_1 < \ldots < x_n = b \]

\[Q = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} f(x_i) \Delta x \]

\[Q = \int_a^b f(x) \, dx \]

\[G(b) - G(a), \quad G = f \]
4.040 1-dimensional Area (Arc Length) 36 min.

1-dimensional Area (arc length)

Axiom 1
we can measure the length of any straight line segment.

Axiom 2
The length of the whole equals the sum of the lengths of the parts.

Intuitive Approach
Lay off a "string" along AB.
Then straighten the string and measure its length with a ruler.

Analytical Approach: Trial #1

Analytical Approach: Trial #2

However, it need not be true that $RcS - lb \le L$.
For example:

The "three questions"
1. Does the limit L^1 exist?
2. If so, how do we compute it?
3. How does L^1 compare with our intuitive ideas about arc length?
Answer to Question 2:

\[
L_b = \lim_{x \to 0} \frac{\int_0^x f(t) \, dt}{x^2}
\]

where \(f(t) = \frac{1}{\sqrt{1 + t^2}}\).

Now if \(f\) is continuous, so also are \(f(0)\), \(1/\sqrt{1 + t^2}\) and \(\int_0^x f(t) \, dt\). Thus, in this case

\[
L_b = \lim_{x \to 0} \frac{\int_0^x f(t) \, dt}{x^2}
\]

which may be hard to evaluate.

Summarizing:

If \(f\) is differentiable on \([0, b]\) and \(f'\) is continuous on \([0, b]\), then

\[
L_b = \lim_{x \to 0} \frac{\int_0^x f(t) \, dt}{x^2}
\]

Generalization of Question 2:

Suppose \(\phi\) is any function defined on \([a, b]\) and we assume that \(f \circ \phi(x) \neq \phi(x)\) where \(\phi\) is some "little" function defined on \([0, b]\).

Then:

\[
\lim_{x \to 0} \frac{\int_0^x (f \circ \phi(t)) \, dt}{x^2} = 0
\]

and if \(f\) is continuous on \([0, b]\),

\[
\lim_{x \to 0} \frac{\int_0^x (f \circ \phi(t)) \, dt}{x^2}
\]

denoted by \(\phi\) is.

The question is: Does \(\phi\) exist?
Block V: Transcendental Functions

5.010 Logarithms without Exponents

34 min.

Logarithms Without Exponents

\[\ln x = \int_{1}^{x} \frac{1}{t} \, dt \]

\[d \ln x = \frac{dx}{x} \]

\[\frac{dm}{m} = -\frac{dk}{k} \]

\[\int \frac{dm}{m} = \ln k + C \]

Problem:
To determine \(L(x) \)
Such that \(L(x) = \frac{1}{x} \)
(This is the case of \(\int x^{-1} \, dx \))

Differential Calculus Approach

\[y = L(x) \quad \frac{dy}{dx} = \frac{1}{x} \]

Integral Calculus Approach

Pick a \(x_0 \) and define
Picked \(\frac{dx}{dt} \) at.

Define \(L(x) \) by

\[L(x) = \int_{1}^{x} \frac{dt}{t} \]

\[L'(x) = \frac{1}{x} \]

\[y = L(x) \]

\[x = x_0 \]

\[y = L(x) \]

\[h = \ln(2) \]
Logarithmic Functions

If f is called logarithmic

then $f(x, y) = f(x) + f(y)$

for all x, y in dom f.

If f is logarithmic,
then:

1. $f(1) = 0$, since $f(1) = f(1) + f(1)$.

2. If $f(x)$ is defined
then $f(x^n) = n f(x)$, since $f(x) = f(x^{n/2} + x^{n/2})$.

Example

With "traditional" logarithms, if the base is b then

$$\log_b b = 1$$

Thus if e is to be the
"base" for $\ln x$, then

$$\ln e = 1$$

Let's compare

$L(bx)$ with $L(b)+L(x)$

$$\frac{dL(bx)}{dx} = \frac{dL(b)+dL(x)}{dx}$$

$$\frac{dL(bx)}{dx} = \frac{1}{bx} \cdot b = \frac{1}{x}$$

Therefore:

$$L(x) = L(1) + L(x) + C$$

If $x = 1$,

$L(1) = L(1) + L(1) + C$

Thus:

$L(1) = 0$
Inverse Logarithms

Claim
\[\ln^{-1}(x+y_z) = (e^{-z} y_z) (e^{x} - z) \]
\[y_z = e^{-z} y_z \]
\[x_z = e^{x} \]
\[z \]
\[x_z y_z + z y_z = e^{x} \]
\[y_z \]
\[\ln^{-1}(x+y_z) = y_z \]

Find \(\frac{dy}{dx} \) if \(y = e^{-z} x \)
\[y = e^{-z} x \rightarrow x = z y \]
\[\frac{dx}{dy} = \frac{1}{z} \]
\[\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} \cdot \frac{dx}{dy} \]
\[\frac{d(e^{-z} x)}{dx} = e^{-z} \frac{dx}{dy} \]
\[\int \frac{dz}{y} \int dx \]

Notation
\(e_z \) is usually abbreviated \(e_z(x) \)
This matches the identification of \(e_z \) with \(\ln e_z \)
\[\frac{d(e^z)}{dx} = e^z \]
\[\frac{d e^x}{dx} = e^x \frac{du}{dx} \]

\[\int e^{-x^2} dx = \frac{-e^{-x^2}}{2} + C \]

\[\int 2x e^{-x^2} dx = \frac{-e^{-x^2} + C}{2} \]

\[\int e^{-x^2} dx = \frac{-e^{-x^2}}{2} + C \]

\[\int 2x e^{-x^2} dx = \frac{-e^{-x^2}}{2} + C \]

\[y'' + ay' + by = 0 \]

Try: \[y = e^{rx} \]

\[y' = re^{rx} \]

\[y'' = r^2 e^{rx} \]

\[r^2 e^{rx} - 5re^{rx} + 6e^{rx} = 0 \]

\[e^{rx} (r^2 - 5r + 6) = 0 \]

\[r = 2 \text{ or } r = 3 \]

In general, if \(a \) and \(b \) are constants, \(y = e^{rx} \) transforms into \(y'' + ay' + by = 0 \)
what a Difference
a Sign Makes

\(
\begin{align*}
\{ & x^2 + y^2 = 1 \\
\text{Circular Functions} & \\
\{ & x^2 - y^2 = 1 \\
\text{Hyperbolic Functions} & \\
\end{align*}
\)

Aside
\(\sin x = \frac{a}{x}\) means
\(\cos x = \frac{b}{x}\)
where \(x^2 = 1\)

(a) Given \(a\) and \(b\) let \(a = 1/\sqrt{2}\)

let \(x = a + b\)

\(y = a - b\)

then \(x^2 = 2\)

\(y^2 = 2\)

\(x + y = 2\)

\(x - y = 0\)

\[
\begin{align*}
\frac{\partial (x^2 + y^2)}{\partial x} & = 2x \\
\frac{\partial (x^2 + y^2)}{\partial y} & = 2y \\
\frac{\partial (x^2 - y^2)}{\partial x} & = 2x \\
\frac{\partial (x^2 - y^2)}{\partial y} & = -2y \\
\text{Let} \ C(t) = e^{x t} \\
S(t) = e^{-x t} \\
\Rightarrow \ C'(t) = S(t) \\
S'(t) = -C(t) \\
\end{align*}
\]

\[
\begin{align*}
\cos t & = \frac{C(t) + S(t)}{2} \\
\sin t & = \frac{C(t) - S(t)}{2} \\
x = \cos t \\
y = \sin t \\
& \Rightarrow x^2 + y^2 = 1, x > 0
\end{align*}
\]
\[y = \tanh x \]
\[\frac{dy}{dx} = \frac{e^x - e^{-x}}{e^x + e^{-x}} \]
\[\frac{d}{dx}(\tanh x) = \text{sech}^2 x \]
\[\int \text{sech}^2 x \, dx = \tanh x + C \]

\[y = \text{sech} x = \frac{e^x + e^{-x}}{2} \]
\[y' = \text{sech} x = \frac{e^x - e^{-x}}{2} \]
\[y'' = \text{sech} x = \frac{e^x + e^{-x}}{2} \]

\[\int \text{sech}^2 x \, dx = \tanh x + C \]

Hyperbolic Functions are a solution to
\[\frac{d^2 x}{dt^2} + K x = 0 \]

Circular Functions are a solution to
\[\frac{d^2 x}{dt^2} - K x = 0 \]
Inverse Hyperbolic Functions

\[y = \sinh^{-1} x \]
\[x = \sinh y \]
\[\frac{dy}{dx} = \cosh y \]
\[\frac{dx}{dy} = \cosh y \]
\[\cosh^2 y - \sinh^2 y = 1 \]
\[\cosh y = \sqrt{1 + x^2} \]
\[\frac{d}{dx} (\sinh^{-1} x) = \frac{1}{\sqrt{1 + x^2}} \]

\[\int \frac{dx}{\sqrt{1 + x^2}} = \sinh^{-1} x + C \]

\[\tan \theta = 2 \]
\[\sec^2 \theta \, d\theta = dx \]
\[\frac{d}{dx} \sqrt{1 + x^2} = \sec \theta \]
\[\frac{d}{dx} \tan \theta = \sec^2 \theta \]
\[\frac{1}{2} \tan \theta = \text{Area} \]
\[\sec \theta = \sqrt{1 + x^2} \]
\[\tan^{-1} \theta = \text{Area} \]
\[\sec^{-1} \theta = \text{Area} \]
\[\sinh^{-1} x \]
\[y = \sinh^2 x \frac{\ln(x + \sqrt{x^2 + 1})}{2} \]

\[x = \sinh y \]
\[e^x - e^{-x} = 2 \]
\[e^y = -e^{-y} \]
\[c^2 - 2x - 1 = 0 \]
\[c^2 - 2x + 2(c^2) + 1 = 0 \]
\[c^2 = 2x \pm \sqrt{3x^2 + 4} \]
\[c^2 = x \pm \sqrt{x^2 + 1} \]
\[y = \ln(x + \sqrt{x^2 + 1}) \]

\[\text{Define} \]
\[C_1(x) = \cosh x, \ x > 0 \]
\[C_2(x) = \cosh x, \ x < 0 \]

Then \(C_1 \) and \(C_2 \) are each 1-1.

\[C_1', C_2' \text{ exist} \]

\[\frac{d}{dx} \cosh x = \sinh x \]
\[\frac{d}{dx} \sinh x = \cosh x \]

\[\cosh^2 x = C_1(1) \]

That is:

\[y = \cosh x \]
\[x = \cosh y, \ y > 0 \]
\[\frac{dx}{dy} = \sinh y, \ y > 0 \]
\[\frac{dy}{dx} = \cosh y \]
\[\cosh^2 y - \sinh^2 y = 1 \]

\[\sinh y = \frac{\sqrt{x^2 - 1}}{x} \]
\[2y = \sinh^{-1} x \]
\[\frac{d}{dx} \cosh^{-1} x = \frac{1}{\sqrt{x^2 - 1}} \]
\[\frac{d}{dx} \sinh^{-1} x = \frac{1}{\sqrt{x^2 - 1}} \]
Block VI: More Integration Techniques

6.010 Some Basic Recipes

30 min.

Some Basic Recipes

Pick a differentiable function G, say $G = f$.
Then:
$$\int f(x) \, dx = G(x) + C$$

Given f, the required G may not exist in 'familiar' form.
For example:
$$\int e^x \, dx = e^x$$

Objective of this block is to find 'recipes' for finding $G(x)$ for various types of $f(x)$.

\[
\begin{align*}
\int u^n \, du & = \frac{u^{n+1}}{n+1} + C, \quad n \neq -1 \\
\int \cos^m x \cos x \, dx & = \frac{\cos^{m-1} x \sin x}{m} + C, \quad m \neq 1 \\
\int \sin^m x \cos^n x \, dx & = -\frac{\sin^{m-1} x \cos^{n+1} x}{m+n} + C, \quad m, n \neq -1 \\
\int \sin x \cos x \, dx & = \frac{\sin^2 x}{2} + C \\
\int \cos^2 x \, dx & = \frac{x}{2} + \frac{\sin 2x}{4} + C \\
\int \sin^2 x \, dx & = -\frac{x}{2} + \frac{\cos 2x}{4} + C \\
\end{align*}
\]
Sums and Differences of Squares

\[\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \left(\frac{x}{a} \right) + C \]

Completing the Square

\[a \left(x^2 + \frac{b}{a} x + c \right) = a \left(x^2 + 2 \cdot \frac{b}{2a} x + \left(\frac{b}{2a} \right)^2 \right) - a \left(\frac{b}{2a} \right)^2 \]

\[\int \frac{dx}{\sqrt{x^2 + \frac{b}{a} x + c}} = \frac{1}{a} \int \frac{du}{\sqrt{u^2 + \frac{b}{2a} u + \left(\frac{b}{2a} \right)^2}} \]

Let \(u = x + \frac{b}{2a} \)
Partial Fractions

Technique applies to \(\int \frac{P(x)}{Q(x)} \, dx \) where \(P \) and \(Q \) are polynomials in \(x \) (deg \(P \leq \deg Q \)).

We can’t factor \(x + 1 \) without using non-real numbers.

\[
\frac{x^2 + 1}{(x + 1)^2} = \frac{(x + 1)(x - 1)}{(x + 1)^2} - \frac{x}{x + 1}
\]

\[
\frac{x^2 + 1}{x + 1} = \frac{x}{x + 1} - \frac{1}{x + 1}
\]

We can handle linear and quadratic denominators.

(2) Theoretically, every real polynomial can be factored into linear and quadratic terms.

\[
\int \frac{dx}{(x-1)(x-2)^2} = \frac{1}{2} \ln|\frac{x-1}{x-2}| - \frac{1}{2} \ln|x-2| - \frac{1}{4} \int \frac{dx}{x-2}
\]

\[
\int \frac{dx}{(x+1)^2} = \frac{1}{2} \int \frac{dx}{x+1} - \frac{1}{2} \ln|x+1| + C
\]
Polynomial Identities

\[
\begin{align*}
& \frac{a^2}{2} + \frac{b^2}{2} + \frac{c^2}{2} + \frac{d^2}{2} \\
\text{(i)} & \quad \text{Let } x = a, y = b, \\
& \quad \text{then } (a, b) = x(b, y) \\
& \quad = ax^2 + bx + c \\
\text{(ii)} & \quad \text{Let } x = a, y = b, \text{ etc.} \\
& \quad 2ax + 2b = 2bx + 2c \\
& \quad 2a + 2b = 2b + 2c
\end{align*}
\]

Beware:

In general

\[
3^x + 5^x = 3y + 5^x
\]

does not imply that

\[
3^x = 3y \quad \text{and} \quad 3^x = 5^x
\]

Example:

\[
\frac{5}{x} \quad \frac{5}{x} \quad \frac{5}{x}
\]

But

\[
6 \neq 10
\]
Integration by Parts

\[\int c \, dx = cx + C \]

Example:

Let \(u = x \) and \(v = \cos x \)

Then

\[\int x \cos x \, dx = \int x \, d(\cos x) \]

\[= x \cos x - \int \cos x \, dx \]

\[= x \cos x - \sin x + C \]

Check: \(x \cos x + \sin x - x \cos x = x \cos x \)

\[\int \frac{dx}{x} = \ln |x| + C \]

\[\int \frac{dx}{x^2} = -\frac{1}{x} + C \]

\[\int x^2 \cos x \, dx = \int x^2 \, d(\sin x) \]

\[= x^2 \sin x - \int 2x \sin x \, dx \]

\[= x^2 \sin x + 2 \int x \sin x \, dx \]

\[= x^2 \sin x + 2(\cos x - x \sin x) + C \]

\[\int x^2 \cos x \, dx = \int x^2 \, d(\sin x) \]

\[= x^2 \cos x - \int 2x \cos x \, dx \]

\[= x^2 \cos x + 2 \int x \cos x \, dx \]

\[= x^2 \cos x + 2(\sin x - x \cos x) + C \]

\[\int x \cos x \, dx = \int x \, d(\sin x) \]

\[= x \sin x - \int \sin x \, dx \]

\[= x \sin x + \cos x + C \]

\[\int \sin x \, dx = -\cos x + C \]

\[\int \cos x \, dx = \sin x + C \]

\[\int \sec x \, dx = \ln |\sec x + \tan x| + C \]

\[\int \csc x \, dx = -\ln |\csc x + \cot x| + C \]

\[\int \tan x \, dx = -\ln |\cos x| + C \]

\[\int \cot x \, dx = \ln |\sin x| + C \]

\[\int \sec^2 x \, dx = \tan x + C \]

\[\int \csc^2 x \, dx = -\cot x + C \]
\[\int \frac{\tan^2 x}{x} \, dx \]
\[u = \tan^2 x \quad dv = dx \]
\[du = \frac{dx}{1 + \tan^2 x} \quad v = x \]
\[\int \tan^2 x \, dx = x \tan^2 x - \int \frac{x \tan^2 x}{1 + \tan^2 x} \, dx \]
\[= \frac{x}{2} \tan^2 x - \frac{1}{2} \ln(\sec^2 x + 1) + C \]

\[\int \ln x \, dx \]
\[u = \ln x \quad dv = dx \]
\[du = \frac{1}{x} \, dx \quad v = x \]
\[\int \ln x \, dx = x \ln x - x + C \]
\[k_x = \int_{a}^{b} x \, dx = \frac{1}{2} b^2 - \frac{1}{2} a^2 + C \]
Improper Integrals

Find the flaw:

\[\int_{\frac{1}{2}}^{\infty} \frac{1}{x^2} \, dx = G(1) - G(\frac{1}{2}) \]

\[G(1) = \infty, \quad G(\frac{1}{2}) = \frac{1}{2} \]

\[\int_{\frac{1}{2}}^{\infty} \frac{1}{x^2} \, dx = \frac{1}{2} - 0 \]

\[(\frac{1}{2} \geq 0, \quad \int_{\frac{1}{2}}^{\infty} \frac{1}{x^2} \, dx > 0) \]

key Point:

\[\int_{a}^{b} f(x) \, dx = G(b) - G(a) \]

\[G'(x) = f(x) \]

requires that \(f \) be

(piecewise) continuous on \([a,b]\)

\[\frac{1}{2} = \frac{1}{2} \quad \text{when} \quad x = 0, 0 \in (a,b) \]

Definition #1:

\[\int_{a}^{b} f(x) \, dx \]

is called improper

of the first kind \(\leftrightarrow \) \(f \) is

infinite for at least one \(x \in [a,b] \)

If \(c \) is the only point

in \((a,b)\) at which \(f \) is infinite

we define

\[\int_{a}^{b} f(x) \, dx = \lim_{h \to 0} \left[\int_{a}^{c-h} f(x) \, dx + \int_{c+h}^{b} f(x) \, dx \right] \]

Pictorially:

\[\text{Area of an infinite region} \]

\[\int_{a}^{b} f(x) \, dx \]

The question centers

about whether \(\lim_{h \to 0} \)

"poses a time" \(f(x) \) is

In our example this

didn't happen.

\[\text{Im} \left[\int_{a}^{b} f(x) \, dx \right] = \text{Im} \left[\lim_{h \to 0} \int_{a}^{c-h} f(x) \, dx + \int_{c+h}^{b} f(x) \, dx \right] \]

\[= \infty - 0 \]
On the other hand, consider

\[\int_{\frac{1}{\sqrt{2}}}^{\frac{1}{2}} x^2 \, dx = \frac{1}{4} - \frac{1}{8} = 0.125 \]

\[\int_{\frac{1}{2}}^{\frac{1}{\sqrt{2}}} x^2 \, dx = \frac{1}{4} - \frac{1}{8} = 0.125 \]

In both cases, the integral converges.

Definition #2

If \(f \) is infinite at \(x = a \), \(c \in (a, b) \) and the improper integral \(\int_{a}^{c} f(x) \, dx \) is convergent

\[
\lim_{x \to c^-} \int_{a}^{x} f(t) \, dt = F(c) - F(a)
\]

otherwise it is called divergent.

Examples:

1. \(f(x) = \frac{1}{x^2} \) and \(f(x) = \frac{1}{\sqrt{x}} \) are inverses.

\[\int_{1}^{2} x^2 \, dx = \lim_{b \to 0^+} \left[\frac{x^3}{3} \right]_{1}^{2} = \frac{8}{3} - \frac{1}{3} = \frac{7}{3} \]

Definition #3

\[\int_{1}^{2} \frac{1}{x^2} \, dx = \lim_{b \to 0^+} \left[-\frac{1}{x} \right]_{1}^{2} = -\frac{1}{2} + 1 = \frac{1}{2} \]

where \(f(x) \) is continuous for \(x > 0 \). It is called improper of the second kind.

Computational Aside

We do not have to be able to compute \(\int_{c}^{d} f(x) \, dx \) to determine its convergence. For example, consider

\[\int_{1}^{\infty} \frac{1}{x^2} \, dx \]

\[\lim_{x \to \infty} \left[-\frac{1}{x} \right] = 0 \]

\[\lim_{x \to 1} \left[-\frac{1}{x} \right] = -1 \]

Infinite Area But Finite Value.

Summary:

The limits of \(f \)

\[\int_{a}^{b} f(x) \, dx \]

give us warning to beware.

However, always examine \(\int_{a}^{b} f(x) \, dx \) for "infinities" of \(f \).
Block VII: Infinite Series

7.010 Many Versus Infinite

26 min.

Many Versus Infinite

\[
\begin{align*}
N_{10} &= 10,000,000,000 \\
N_{10} &= 10
\end{align*}
\]

\[N + 1, k + 2, k + 3, \ldots\]

It is no more the end of the number system than \(\infty \).

Additional Examples

1, 3, 2, 5, 7, 4, 9, 1, 6, \ldots

No matter where you stop (even at \(10^6 \)) there are twice as many "odds" as "evens".

\[
\begin{align*}
1 + 1 + 1 + \cdots &= 0 \quad \left[\text{finite sum}\right] \\
1 + 2 + 3 + \cdots &= 1 \quad \left[\text{infinite sum}\right]
\end{align*}
\]

Notice the need for order as well as the terms.

Why deal with infinite sums? Because we need them.

\[
A_k = \lim_{n \to \infty} \sum_{i=1}^{n} f(x)
\]

How shall we add infinitely many terms?

Consider \(9 \), \(\frac{1}{2} \), \(\frac{1}{4} \), \(\frac{1}{8} \), \(\frac{1}{16} \), \(\frac{1}{32} \) and we want

\[
\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots
\]

Note: Our intuition is defined because it doesn't apply.
Aₙ = ½
A₂ = ½ + ½ = 1
A₃ = ½ + ½ + ½ = 3/2
(Do not confuse the a's and b's. The sequence of numbers being added is 1, ½, ¾, ...)
(5, 5, 5) which the partial
sums in the sequence 0, 1/2, 3/4...
(½, ½, ½). The sum in the
number Aₙ = ½ + ½ + ½ = 3/2

Generalized, if Aₙ = ½
then aₙ = Aₙ = Aₙ - Aₙ₋₁
= Aₙ - Aₙ₋₁ = 2/ₙ
= 1 - 1/n

For example:
A₃ = 1 + 1/3 + 1/5 + 1/7 + ... = 2 - 1/n
= 1 - 1/n

So, how about
Aₙ = 1 - 1/n

Evidently?

As n → ∞, define L = lim Aₙ

Example:

Notice some limit
theorems as before
apply.

Example:

\[\lim \left(\frac{2n+3}{3n^2} \right) = \lim \left[\frac{2/n + 3/n^2}{3} \right] \]

That is:
\[\frac{2}{n^2} \text{ converges to } \lim_{n \to \infty} \frac{2}{n^2} = 0 \]

On the other hand, lim aₙ = 0
so not enough to guarantee
the convergence of \(\sum aₙ \).

Example:

Pictorially:

Basic Definition:
The infinite sequence
b₀, b₁, b₂, ... st.(i) is said
to converge to the limit L
(written lim bₙ = L) if for every number ε > 0, we

\[\text{can find } N₀ \text{ such that } n > N₀ \Rightarrow \left| bₙ - L \right| < ε \]
Positive Series

Ordering:
\[S = \{1, 2, 3, 4, 5\} \]
\[S = \{7, 9, 11, 13\} \]
7 is a lower bound for S
11 is an upper bound for S
7 is the greatest lower bound for S
11 is the least upper bound for S

These results are more subtle for infinite sets:

Examples:
1. Let \(S = \{a, a, a, a, \ldots\} \)
 \(S = \{b, b, b, b, \ldots\} \)
 \(a \neq b \) for \(S \), but \(1 \neq S \)
2. Let \(S = \{a, a, a, a, \ldots\} \)
 \(a = \{b, b, b, b, \ldots\} \)
 \(0 \in S \) for \(S \), but \(0 \notin S \)

Formal Definitions:

M is called an upper bound for \(S \) if \(m > S \) for all \(x \in S \)

A sequence \(\{a_n\} \) is called monotone non-decreasing if
\(a_n \leq a_{n+1} \) for all \(n \)
(That is: \(a, a, a, a, \ldots \))

For such sequences, two possibilities exist:
1. \(\{a_n\} \) has no upper bound
 In this case we write
 \(\lim a_n = \infty \)
 (An example is: \(1, 2, 3, \ldots \) when \(a = 0 \))

A set is bounded if it has both an upper and a lower bound

Key Property:
Every bounded set has a glb and lub
Pos.ve Series

If $a_n > 0$ for each $n,$ then
Σa_n is called a positive series.

In this case the sequence of partial sums is monotonic non-decreasing.

Therefore Σa_n is a positive series, it either diverges to ∞ or it converges to the limit L where L is the lub in the sequence of partial sums.

Comparison Test

Suppose Σa_n is a convergent positive series and $0 \leq b_n \leq a_n$ for each $n.$

Then Σb_n also converges.

Proof

Let $T_{a_n} = \sum_{k=1}^{n} a_k$ and $T_{b_n} = \sum_{k=1}^{n} b_k$ for each $n.$

$\lim_{n \to \infty} T_{b_n} = \lim_{n \to \infty} T_{a_n}$

$b_n \leq a_n$ for each $n.$

b_n is bounded (and monotonic non-decreasing), so $b_n \to \ell$ exists.

Notes

(1) The condition $0 \leq b_n \leq a_n$ for all n can be weakened to $0 < b_n < a_n$ for all $n.$ (i.e., for a "Sufficiently Large") since convergence depends on the "end" of the sequence $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots - \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \cdots + \frac{1}{n} + \cdots$

(2) If a_n is a positive divergent series, then Σb_n also diverges. Since a_n convergence would imply b_n converges.

Integral Test

Series and Improper Integrals

Suppose there is a decreasing continuous function $f(x)$ such that $f(n) = a_n$ is the nth term of the positive series $\Sigma a_n.$

Then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\int_{1}^{\infty} f(x) \, dx$ converges.

Proof

$\int_{1}^{n} f(x) \, dx \leq \sum_{i=1}^{n} a_i \leq a_1 + \int_{1}^{n} f(x) \, dx.$
Absolute Convergence

Consider:
\[1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} \]

We see:
1. Terms alternate in sign
2. Term tends to 0
3. Terms decrease in magnitude

Claim: \[\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} \text{ converges} \]

Geometric Proof
\[\begin{array}{c}
\frac{1}{2} \times \frac{1}{2} < \frac{1}{2} \\
\frac{1}{4} \times \frac{1}{4} < \frac{1}{4} \\
\vdots
\end{array} \]

(\text{It turns out that} \ L = \frac{1}{2}, \ \text{but who'd have guessed it?})

\[\text{SO WHAT?} \ldots \]

Definition
1. \(\sum_{n=1}^{\infty} a_n \) is said to converge absolutely if \(\sum_{n=1}^{\infty} |a_n| \) converges.

2. A series which converges but not absolutely is called conditionally convergent.

\[\sum_{n=1}^{\infty} a_n \] is conditionally convergent.
The Subtlety of Conditional Convergence

The sum of a cond. conv. series depends on the order of the terms.

Example:
Divide the terms of \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) into 2 groups (set B):
- \(\mathcal{P} = \{ \frac{1}{1}, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \cdots \} \)
- \(\mathcal{N} = \{ \frac{1}{2}, \frac{1}{3}, \frac{1}{5}, \frac{1}{6}, \cdots \} \)

Both \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) and \(\sum_{n=1}^{\infty} \frac{1}{n} \) diverge.

Let us, for example, make the sum \(S_n \) as in the last section and write \(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} \) until the sum first exceeds \(\frac{\pi}{2} \).

This must happen since the sum is increasing (or as \(n \to \infty \)).

In particular:
- \(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} \) We next "cancel" members of \(\mathcal{N} \) until the sum falls below \(\frac{\pi}{2} \).

Summary So Far:

- If \(\sum_{n=1}^{\infty} a_n \) is cond. conv., its limit exists, but the limit changes as the order of the terms is changed. That is, rearranging the terms changes the series.
- This is not true in "fark" arithmetic.
- Don't "monkey" with conditional convergence.

The beauty of absolute convergence is that the sum is the same for every rearrangement of the terms.

Details are left to the supplementary notes.

The "monkey" term: 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \cdots

(\frac{\pi}{2} was not important - though the arithmetic gets messier if we choose a larger number.)

Continue with \(\mathcal{P} \):
- \(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \cdots \)
- \(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \cdots \)
- \(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \cdots \)
- \(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \cdots \)
- \(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \cdots \)
- \(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \cdots \)
- \(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \cdots \)
- \(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \cdots \)
- \(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \cdots \)}
7.040 Polynomial Approximations

Polynomial Approximations

Let \(P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \)

If \(P_n(x) = x^n \),

\[P_n^{(k)}(x) = \binom{n}{k} x^{n-k} \]

Example:

Let \(f(x) = e^x \)

Then \(f^{(k)}(x) = e^x \)

\[P_k(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k \]

We would like to be able to compare \(f(x) \) with \(\lim_{n \to \infty} P_n(x) \)

This involves 3 questions:

1. Does \(\lim_{n \to \infty} P_n(x) \) exist? \(P(x) = ? \)
2. If so, does it equal \(f(x) \)?
3. Letting \(P(x) = \lim_{n \to \infty} P_n(x) \), does \(P \) possess the polynomial-

property possessed by \(f(x) \)?

Diagram:

- \(P_0(x) = 1 \)
- \(P_1(x) = 1 + x \)
- \(P_2(x) = 1 + x + \frac{x^2}{2} \)
- \(P_3(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} \)
Counter-Example

2. Let \(f(x) = \begin{cases} x^2, & \text{if } x \geq 2 \\ 3, & \text{if } x < 2 \end{cases} \)
 \(f(0) = 0, f'(0) = 3, f''(0) = 3 \)
 \(f^{(n)}(0) = 0, n > 2 \)
 \(f^{(n)}(x) = \begin{cases} 2^nx^n & \text{for } 0 < x < 2 \\ 2^nx^n & \text{for } x \geq 2 \end{cases} \)
 \(f^{(n)}(1) = 2^n
eq f(1) \)

Pictorially

The Ratio Test and Absolute Convergence:

Let \(a_n \) be a sequence of real numbers.

Then \(\sum a_n \) converges if \(\frac{|a_{n+1}|}{|a_n|} \) is bounded by \(L < 1 \).

But we may test \(\sum |a_n| \) for convergence by the ratio test and the root test.

Examples:

1. \(2^n \) converges \(\Rightarrow |x| < 1 \)
2. \(\sqrt{n} \) diverges \(\Rightarrow |x| > 1 \)
3. \(\sqrt[n]{n} \) diverges (absolutely) \(\Rightarrow |x| > 1 \)
4. \(\sqrt[n]{n} \) converges (absolutely) \(\Rightarrow |x| > 1 \)

"Taylor's Theorem with Remainder"

Using integration by parts repeatedly (as shown in our text), it follows that if \(f \) and its first \(n \) derivatives exist at \(x = a \), then

\[
 f(x) = f(a) + \frac{f'(a)(x-a)}{1!} + \frac{f''(a)(x-a)^2}{2!} + \cdots + \frac{f^{(n-1)}(a)(x-a)^{n-1}}{(n-1)!} + R_n(x)
\]

where

\[
 R_n(x) = \int_a^x \frac{(x-t)^{n-1}f^{(n)}(t)}{(n-1)!} dt
\]
Uniform Convergence

Review: \[\lim_{n \to \infty} f_n(x) = f(x) \]
for all \(x \in [a, b] \) we say \(\{f_n\} \) converges pointwise to \(f \) on \([a, b] \).

Example: Suppose \(f_n(x) = \frac{x^n}{n} \).
Then \(\lim_{n \to \infty} f_n(x) = 0 \).
Hence \(\{f_n\} \) converges to \(0 \).

Now \(\lim_{n \to \infty} f_n(0) = 0 \) \(\lim_{n \to \infty} f_n(1) = \frac{1}{n} \to 0 \).
So \(\lim_{n \to \infty} f_n(1) = 0 \).
Note \(\epsilon > 0 \) has to be small.

Of course, \(N \) and \(N_0 \) need not be the same.

Two Basic Definitions
(1) Let \(\lim_{n \to \infty} f_n(x) = f(x) \) on \([a, b] \).
Then \(\lim_{n \to \infty} f_n(x) = f(x) \) for each \(x \in [a, b] \).
That is, \(\lim_{n \to \infty} f_n(x) = f(x) \) for each \(x \in [a, b] \).

Example: \(f_n(x) = \frac{x^n}{n} \).
Then \(\lim_{n \to \infty} f_n(x) = 0 \).
Hence \(\{f_n\} \) converges to \(0 \).

In general, the choice of \(N \)
depends on the choice of \(x \), and
there are infinitely many such
choices \((x, N) \).

(2) If we can find one \(N \)
such that \(\lim_{n \to \infty} f_n(x) = f(x) \)
everywhere \(x \in [a, b] \), we say that
the convergence is uniform.

A Pictorial Interpretation

From our picture it should seem clear that \(\{f_n\} \) converges uniformly on \([a, b] \).
and \(f \) is continuous on \([a, b] \).
Then \(f \) is also continuous on \([a, b] \).

(Note: This result, as we have already seen, need not be true for pointwise convergence. Recall our example in which \(f_n(x) = n^2 x \) for \(x \in (0, 1] \).

Since \(f \) is continuous at \(x_0 \), \(f_n \) means
\(\lim_{n \to \infty} f_n(x_0) = f(x_0) \) and since \(f(\bar{x}) = \lim_{n \to \infty} f_n(\bar{x}) \)
for every \(\bar{x} \) in \([a, b] \), we may write \(f(x) = \lim_{n \to \infty} f_n(x) \).
These two results are proven as theorems in the supplementary notes. A theorem about differentiation is also proved.

Differentiation is in a way more subtle than integration since it requires "smoothness" as well as "unbrokenness".

Example: Define f on $[0,a]$ by:

$$f(x) = \begin{cases}
0 & \text{if } x = 0 \\
1 & \text{if } x > 0
\end{cases}$$

Then $f(x)$ is not continuous at $x = 0$, hence the convergence is not uniform.

\[
\lim_{n \to \infty} \int_0^a f_n(x) \, dx = \int_0^a f(x) \, dx
\]

\[
\lim_{n \to \infty} f_n(x) = 0
\]

\[
\int_0^a f_n(x) \, dx \to \int_0^a f(x) \, dx
\]

Next time we shall show that within the interval of absolute convergence, \(\sum \frac{a_n}{n^2} \) converges uniformly to \(\frac{\pi^2}{6} \).

In other words, within the radius of convergence, \(\frac{1}{x^2} \) "enjoys the usual" polynomial properties associated with \(\frac{1}{x} \).

Application of Uniform Convergence to Series

Recall that \(\sum a_n x^n \) is an abbreviation for

\[
\lim_{n \to \infty} \sum_{n=0}^{\infty} a_n x^n
\]

that is, \(a_0 + a_0 x + a_1 x + a_2 x^2 + \cdots \) represents the limit of the sequence:

\[
a_0, a_0 + a_1 x, a_0 + a_1 x + a_2 x^2 + a_3 x^3, \ldots
\]
Uniform Convergence of Series

Weierstrass M-Test

Suppose \(\sum_{n=1}^{\infty} M_n \) is a positive convergent series and that \(|f_n(x)| \leq M_n \) for each \(n \) and each \(x \in [a,b] \).

Then \(\sum_{n=1}^{\infty} f_n(x) \) converges uniformly to \(f(x) := \sum_{n=1}^{\infty} f_n(x) \) on \([a,b]\).

Proof

\[
|f(x) - \sum_{k=1}^{n} f_k(x)| = \left| \sum_{k=n+1}^{\infty} f_k(x) \right| \\
\leq \sum_{k=n+1}^{\infty} |f_k(x)| \leq \sum_{k=n+1}^{\infty} M_k \\
\leq \frac{\sum_{n=1}^{\infty} M_n}{n} \\
\leq \frac{\epsilon}{n} \quad \text{for sufficiently large } n.
\]

An Example:

Let us compute \(\sum_{n=1}^{\infty} \frac{\cos x + \cos 2x + \cdots + \cos nx}{n} \).

By uniform convergence, we have:

\[
\sum_{n=1}^{\infty} \frac{\cos x + \cos 2x + \cdots + \cos nx}{n} = \int \frac{\cos x + \cos 2x + \cdots + \cos nx}{n} \, dx.
\]

Thus,

\[
\sum_{n=1}^{\infty} \frac{\cos x + \cos 2x + \cdots + \cos nx}{n} = \int \left(\frac{\cos x + \cos 2x + \cdots + \cos nx}{n} \right) \, dx.
\]

For each \(x \), \(\frac{\cos x + \cos 2x + \cdots + \cos nx}{n} \) converges uniformly to \(\frac{\sin x + 2 \sin 2x + \cdots + n \sin nx}{n} \) as \(n \to \infty \).
Application to Power Series

Let \(|x| < R \) and
\[
\sum_{n=0}^{\infty} a_n x^n \text{ converge for } n < R
\]
\[
\lim_{n \to \infty} a_n x^n = 0 \left(\text{since } \sum_{n=0}^{\infty} a_n x^n \text{ converges} \right)
\]
Given \(R > 0 \), there exists \(N \) such that \(n > N \) implies \(\left| a_n x^n \right| < \frac{1}{n} \)

Key idea is:
\[
\left| a_n x^n \right| < \left| \frac{(a_0 x^0)^n}{n} \right|
\]
\[
= 10 \cdot x^n \left| \frac{1}{n} \right|
\]
\[
\leq M \left| \frac{1}{n} \right|
\]
Now \(\frac{1}{n} \) is a positive constant < 1
\[
\sum_{n=0}^{\infty} \frac{1}{n} \text{ is a positive convergent (geometric) series}
\]
By Weierstrass M-test,
\[
\sum_{n=0}^{\infty} a_n x^n \text{ is uniformly convergent}
\]
if \(R \) when \(R = \) the radius of convergence for \(\sum_{n=0}^{\infty} a_n x^n \)

Example

Find the area of \(R \)

where:

\[
P_k = \int_0^1 e^{-x^2} \, dx, \text{ but we do not know (explicitly) } g(x)
\]

such that \(g'(x) = e^{-x^2} \)

\[
\sum_{n=0}^{\infty} \frac{1}{n!} \left(\sum_{m=0}^{n} \frac{(-1)^m x^m}{m!} \right)
\]

In other words
\[
A = 1 - \frac{1}{3} + \frac{1}{10} - \frac{1}{45} + \frac{1}{180} + \ldots
\]
\[
\leq 0.749
\]
Resource: Calculus Revisited
Herbert Gross

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.