Unit 2: An Introduction to Partial Derivatives

1. Lecture 3.020

a. Calculus of Several Variables

Given \(w = f(x, y, z) \), we let \(z = 0 \) (to take advantage of geometry) so \(w = f(x, y) \)
where \(x \) and \(y \) are independent.

Find \(y \) at \(y = 0 \)
and let \(x \) vary between \(-1, 1 \) and \(2, 1, 3 \).

Example

\[
\frac{\partial f}{\partial x} (1, 2, 3) = z = \frac{\partial f}{\partial x} (1, 2, 3) = \frac{\partial f}{\partial x} (1, 2, 3)
\]

b. \(f_{1}, f_{2}, \ldots f_{n} \) called partial derivatives of \(f \) with \(x_{1}, x_{2}, \ldots, x_{n} \).

"usual" derivative properties still hold.

Example:

Let \(w = e^{x_{1}} \sin(2x_{2}) \);

Then \(\frac{\partial w}{\partial x_{1}} = e^{x_{1}} \cos(2x_{2}) \) \(+ 2e^{x_{1}} \sin(2x_{2}) \)

Example (Explanation?)

\(w = e^{x_{1}} \cos(2x_{2}) \)

Let \(x_{1} = 2, x_{2} = 3 \).

\(w = f(2, 3) = e^{2} \cos(6) \)

\(\frac{\partial w}{\partial x_{1}} = e^{x_{1}} \cos(2x_{2}) \)

Generally we consider \(w = g(x_{1}, x_{2}) \) or \(w = h(x_{1}, x_{2}) \) by hand, even \(w = u(x, y) \)

[Think of polar vs. Cartesian Coordinates. Never use \(x(x, y) \)]

c. Pictorially (n = 2)

\[
\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y}
\]

Tangent Plane

\[
\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y}
\]

3.2.1
2. Read Thomas, Sections 15.2 and 15.3.

3. Exercises:

3.2.1(L)

a. If \(f(x,y) = x^2 + y^3 \), compute \(f_x(1,2) \).

b. If \(f(x,y) = x^3 y + x^4 + y^5 \), compute \(f_{xx}(1,2) \) where \(f_{xx}(1,2) \) means
\[
\frac{\partial^2 f}{\partial x^2}
\]

\((1,2) \).

c. Find \(f_y(1,2,3,4) \) if \(f(w,x,y,z) = w^2 xy + z^3 y^2 + x^3 zw \).

3.2.2

a. Determine \(f_w(w,x,y,z) \) and \(f_{ww}(w,x,y,z) \) if \(f(w,x,y,z) = w^3 x^2 y + x^3 y^2 z + wz^4 \). In particular, determine \(f_{ww}(1,2,3,4) \).

b. Compute \(\frac{\partial z}{\partial x} \) if
\[
z^3 xy + z^5 y + \cos z = 1.
\]

3.2.3(L)

Let \(x \) and \(y \) be a pair of independent variables and define \(u \) and \(v \) by
\(u = 2x - 3y \) and \(v = 3x - 4y \).

a. Show that \(u \) and \(v \) are then also a pair of independent variables.

b. Solve the above equations and express \(x \) and \(y \) in terms of \(u \) and \(v \). From this compute \(\frac{\partial x}{\partial u} \) and compare this with \(\frac{\partial u}{\partial x} \).

c. Express \(x \) in terms of \(u \) and \(y \), and then compute \(\frac{\partial x}{\partial u} \). How does this answer compare with the result in (b)?

d. Express \(u \) in terms of \(x \) and \(v \), and then compute \(\frac{\partial u}{\partial x} \). In this case, does \(\frac{\partial u}{\partial x} = \frac{1}{(\frac{\partial x}{\partial u})} \) where \(\frac{\partial x}{\partial u} \) is as in (b)?

3.2.4

Given that \(x \) and \(y \) are independent variables, define \(u \) and \(v \) by
\(u = x^2 - y^2 \) and \(v = 2xy \).

a. Explain why \(u \) and \(y \) are also independent variables.

(continued on next page)
3.2.4 continued

b. Show that \(\frac{\partial x}{\partial u} = \frac{1}{\frac{\partial u}{\partial x}} \).

c. Determine the value of \(\frac{\partial x}{\partial u} \).

3.2.5 (L)

From the polar coordinate relations, \(y = r \sin \theta \) and \(x = r \cos \theta \), compute \(\frac{\partial \theta}{\partial y} \) where, from now on, \(\frac{\partial \theta}{\partial y} \) will be interpreted to mean \(\frac{\partial \theta}{\partial y} \) unless otherwise specified.

3.2.6

Given that \(x \) and \(y \) are independent variables, assume that \(u \) and \(v \) are functions of \(x \) and \(y \) [we usually denote this as either \(u = u(x,y) \) and \(v = v(x,y) \), or, if we feel that misinterpretation might arise, as \(u = f(x,y) \) and \(v = g(x,y) \)] such that \(u \) and \(v \) are also independent variables. Assume further that we also know that \(u^2 = y^2 v \). Determine \(\frac{\partial u}{\partial y} \).

3.2.7 (L)

Let \(S \) be the surface defined by the Cartesian equation \(z = x^2 + y^3 \). Assume that there is a plane which is tangent to \(S \) at the point \(P(1,2,9) \). Find the equation of this plane.

3.2.8

Assuming that the surface defined by the Cartesian equation \(z = x^3y^2 + x^5 + y^7 \) has a tangent plane at the point \((1,1,3) \), find the equation of this plane.

3.2.9 (L)

Let the surface \(S \) have the Cartesian equation \(x = g(y,z) \).

(continued on next page)
3.2.9(L) continued

a. Assuming that S possesses a tangent plane at the point \((x_0, y_0, z_0)\), find the equation of this plane.

b. The plane M is tangent to the surface \(x = e^{3y-z}\) at the point \((1, 2, 6)\). Find the equation of M.

c. Check the solution in (b) by expressing \(x = e^{3y-z}\) in the form \(z = f(x, y)\).
Resource: Calculus Revisited: Multivariable Calculus
Prof. Herbert Gross

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.