1. Read Supplementary Notes, Chapter 6, Section F.

2. Exercises:

4.4.1

Define \(f: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) by \(f(x,y) = (u,v) \) where \(u = 6x + 5y \) and \(v = x + y \).

a. In terms of the determinant of the matrix of coefficients, show how we may conclude that \(f \) exists.

b. Letting \(A = \begin{bmatrix} 6 & 5 \\ 1 & 1 \end{bmatrix} \), compute \(A^{-1} \) and then describe the mapping \(f^{-1}: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) explicitly.

c. In particular, compute \(f^{-1}(16,3) \).

d. Compute \(f(L) \) where \(L \) is the line \(y = 2x \) [i.e., \(L = \{ (x,y): y = 2x \} \)].

4.4.2

Define \(f: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) by \(f(x,y) = (u,v) \) where \(u = x + 4y \), \(v = 3x + 12y \).

a. Using determinants, show that \(f \) does not exist.

b. Describe the set \(f(E^2) \).

c. Assuming that we view \(f \) geometrically, find the locus of all points \((x,y) \) in the \(xy \)-plane such that \(f(x,y) = (8,24) \).

d. Use (c) to show a geometric construction for finding the point \((x,y) \) on the line \(2x + 9y = 17 \) for which \(f(x,y) = (8,24) \).

e. Show that no other point on \(2x + 9y = 17 \) can be mapped into \((8,24) \) by \(f \).

4.4.3

Define \(f: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) by \(f(x,y,z) = (u,v,w) \) where

\[
\begin{align*}
 u &= x + y + z \\
 v &= 2x + 3y + 2z \\
 w &= x + 3y + z
\end{align*}
\]

(continued on the next page)
Study Guide
Block 4: Matrix Algebra
Unit 4: Matrices as Linear Functions

4.4.3 continued

a. Show that \(f(E^3) \) is contained in \(\{(u,v,w):3u - 2v + w = 0\} \).
b. Interpret part (a) geometrically.
c. Describe the set \(S \) of all elements of \(E^3 \) for which \(f(x,y,z) = (0,0,0) \).
d. The points \((0,0,0)\) and \((1,1,-1)\) lie in the plane defined by \(f(E^3) \) [i.e., in \(w = -3u + 2v \)]. Describe the locus of all points \((x,y,z)\) such that \(f(x,y,z) \) is on the line \(L \) determined by \((0,0,0)\) and \((1,1,-1)\).

4.4.4

Given the system of equations

\[
\begin{align*}
x_1 + 2x_2 + x_4 &= b_1 \\
2x_1 + 5x_2 + 3x_3 + 4x_4 &= b_2 \\
3x_1 + 5x_2 + 2x_3 + x_4 &= b_3 \\
3x_1 + 4x_2 + x_3 - x_4 &= b_4
\end{align*}
\]

a. Use the augmented-matrix technique to determine the constraints under which the above equations have a solution.

b. In particular, show that if the constraints are met, \(x_3 \) and \(x_4 \) may be chosen at random, after which \(x_1 \) and \(x_2 \) are uniquely determined.

c. Let \(f:E^4 \rightarrow E^4 \) be defined by \(f(x_1,x_2,x_3,x_4) = (b_1,b_2,b_3,b_4) \), where \(b_1, b_2, b_3, \) and \(b_4 \) are as above.

(i) Show that there is no \(x \in E^4 \) such that \(f(x) = (1,1,1,1) \).

(ii) Find all \(x \in E^4 \) such that \(f(x) = (1,1,4,5) \).

4.4.5

Find the constraints under which the system

(continued on the next page)
4.4.5 continued

\[
\begin{align*}
 x_1 + x_2 + x_3 + 2x_4 + x_5 &= b_1 \\
 2x_1 + 3x_2 + 2x_3 + 3x_4 + 3x_5 &= b_2 \\
 3x_1 + 3x_2 + 4x_3 + 5x_4 + 2x_5 &= b_3 \\
 x_1 + 3x_2 - x_3 + 2x_4 + 5x_5 &= b_4 \\
 -2x_1 + x_2 - 6x_3 - 3x_4 + 5x_5 &= b_5
\end{align*}
\]

(1)

has solutions. In particular, discuss the function \(f: \mathbb{E}^5 \rightarrow \mathbb{E}^5 \) defined by \(f(x) = f(x_1, x_2, x_3, x_4, x_5) = (b_1, b_2, b_3, b_4, b_5) \), where \(b_1, b_2, b_3, b_4, \) and \(b_5 \) are as defined in (1).
Resource: Calculus Revisited: Multivariable Calculus
Prof. Herbert Gross

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.