Unit 6: Equations of Lines and Planes

1. Lecture 1.060

Equations of Lines and Planes

Planes: Surfaces
Lines: Curves
Cartesian Coordinates
\(P(x, y, z) \) is a point
\(n = A\mathbf{i} + B\mathbf{j} + C\mathbf{k} \) normal to plane

- \(A(x-x_0) + B(y-y_0) + C(z-z_0) = 0 \) is equation of plane through \((x_0, y_0, z_0)\) with \((A, B, C)\) as a normal.
- Example:
 \(2(x-1) + 3(y+1) + 4(z-2) = 0 \) passes through \((1, -1, 2)\) and has \(2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}\) as a normal.

Note:
- For fixed \(A, B, C\)
 \(Ax + By + Cz = D\)
 is a family of parallel planes.
 Each has \(A\mathbf{i} + B\mathbf{j} + C\mathbf{k}\) as a normal.

Equation of plane relates to line.
\(ax + by + cz = d\), which generalizes \(ax + by = c\) (line)

Plane has 2 degrees of freedom.
Example:
\(x + 2z = 8 \)
May pick two of three unknowns at random, and solve for the third.
\((0, 0, 0)\)
\((x-6) + 2(y-3) + 7(z-2) = 0\)
\((0, 0, 2)\)

Equation of a line
\(\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c} \)
Example:
\(\frac{x-1}{4} = \frac{y-2}{3} = z \)
passes through \((1, 2, 0)\) and slope to \(4\mathbf{i} + 3\mathbf{j} + \mathbf{k}\)

\(4(x-1) + 3(y-2) + 7(z-0) = 0 \)

Note:
- The line has one degree of freedom.
Example:
\(2x + 3y + z = \frac{2\mathbf{i} + \mathbf{k}}{3} \)
Let \(x = 2\) then \(2\mathbf{i} + \mathbf{k} = \frac{2\mathbf{i} + \mathbf{k}}{3} \)
\((\frac{9}{2}, 10, 20)\) is a point on the line.
Lecture 1.060 continued

If we solved
\[\frac{x-1}{4} = \frac{y+3}{5} = \frac{z-2}{3} \]
we would obtain the plane
\[4x - 3z = 17 \]
(Note difference between
\[\{(x,y,z) : 4x - 3z = 17\} \]
and \[\{(x,y,z) : 4y - 3z = 17\} \]

Similarly \[\frac{x}{4} = \frac{y-5}{2} = \frac{z}{3} \]
solves the plane
\[7x - 3z = 17 \]

Thus
\[\{(x,y,z) : 5x - 3z = 17\} \]
may be viewed as
the intersection of
the plane
\[4y - 3z = 17 \]
and \[7x - 3z = 17 \]
2. Read Thomas, section 12.8

3. Exercises:

1.6.1(L)

Find the equation of the plane determined by the points A(1,2,3), B(3,3,5), and C(4,8,1). (see exercise 1.5.2)

1.6.2

Show that \(y = 2x \) is the equation of the plane which passes through \((0,0,0)\) and has \(\mathbf{i} - \mathbf{j} \) as its normal.

1.6.3(L)

a. What is the equation of the line which is parallel to \(3\mathbf{i} + 4\mathbf{j} + 2\mathbf{k} \) and passes through \((-2,5,-1)\)?

b. At what point does this line intersect the xy-plane?

1.6.4

Find the directional cosines for the line

\[
\frac{x - 1}{6} = \frac{y + 2}{3} = \frac{z - 4}{2}.
\]

1.6.5

At what point does the line which is parallel to \(2\mathbf{i} + 3\mathbf{j} + 5\mathbf{k} \) and which passes through \((-1,3,-2)\) intersect the plane given in Exercise 1.6.1?

1.6.6(L)

a. Find the distance from \((7,8,9)\) to the plane \(2x + 3y + 6z = 8 \).

b. At what point does the line through \((7,8,9)\) perpendicular to the plane in a. intersect this plane?

c. Find the distance between the planes \(2x + 3y + 6z = 22 \) and \(2x + 3y + 6z = 8 \).
Study Guide
Block 1: Vector Arithmetic
Unit 6: Equations of Lines and Planes

1.6.7

The points A(1,1,4) and B(3,4,5) are on the line L, while the points C(3,4,-1), D(4,6,2), and E(8,9,7) are in the plane M. At what point does the line L intersect the plane M?

1.6.8

a. Find the angle between the planes whose Cartesian equations are $3x + 2y + 6z = 8$ and $2x + 2y - z = 5$.

b. Find the Cartesian equation of the line which is the intersection of the two planes given in part a.
Quiz

1. By computing \((-1)(1 - 1)\) in two different ways, use the rules and theorems of arithmetic to prove that \((-1)(-1) = 1\).

2. Find a unit vector which is normal to the curve \(y = x^3 + x\) at the point \((1,2)\).

3. Let \(A(1,3,5), B(3,4,7)\) and \(C(-1,0,-1)\) be points in space. Find a unit vector such that it originates at \(A\); lies in the plane determined by \(A, B,\) and \(C\); and bisects \(\angle BAC\).

4. Let \(P\) denote the plane determined by the points \(A(1,2,3), B(3,3,5),\) and \((4,4,9)\).
 (a) Determine the measure of \(\angle BAC\).
 (b) Find the equation of the plane \(P\).
 (c) What is the area of \(\triangle ABC\)?
 (d) At what point do the medians of \(\triangle ABC\) intersect?
 (e) What is the equation of the line which passes through \(C\) and is parallel to \(AB\)?

5. Find the distance of the point \(P_0(2,3,4)\) from the plane whose Cartesian equation is \(4x + 5y + 2z = 6\). Also determine the point at which the line through \(P_0\), perpendicular to the plane \(4x + 5y + 2z = 6\), intersects this plane.
Resource: Calculus Revisited: Multivariable Calculus
Prof. Herbert Gross

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.