CONTENTS

Chapter 1—REVIEW OF VECTOR ANALYSIS 1

1.1 COORDINATE SYSTEMS 2
 1.1.1 Rectangular (Cartesian) Coordinates 2
 1.1.2 Circular Cylindrical Coordinates 4
 1.1.3 Spherical Coordinates 4

1.2 VECTOR ALGEBRA 7
 1.2.1 Scalars and Vectors 7
 1.2.2 Multiplication of a Vector by a Scalar 8
 1.2.3 Addition and Subtraction 9
 1.2.4 The Dot (Scalar) Product 11
 1.2.5 The Cross (Vector) Product 13

1.3 THE GRADIENT AND THE DEL OPERATOR 16
 1.3.1 The Gradient 16
 1.3.2 Curvilinear Coordinates 17
 (a) Cylindrical 17
 (b) Spherical 17
 1.3.3 The Line Integral 18

1.4 FLUX AND DIVERGENCE 21
 1.4.1 Flux 22
 1.4.2 Divergence 23
 1.4.3 Curvilinear Coordinates 24
 (a) Cylindrical Coordinates 24
 (b) Spherical Coordinates 26
 1.4.4 The Divergence Theorem 26

1.5 THE CURL AND STOKES' THEOREM 28
 1.5.1 Curl 28
 1.5.2 The Curl for Curvilinear Coordinates 31
 (a) Cylindrical Coordinates 31
 (b) Spherical Coordinates 33
 1.5.3 Stokes' Theorem 35
 1.5.4 Some Useful Vector Relations 38
 (a) The Curl of the Gradient is Zero
 \[\nabla \times (\nabla f) = 0 \] 38
 (b) The Divergence of the Curl is Zero
 \[\nabla \cdot (\nabla \times A) = 0 \] 39

PROBLEMS 39

Chapter 2—THE ELECTRIC FIELD 49

2.1 ELECTRIC CHARGE 50
 2.1.1 Charging by Contact 50
 2.1.2 Electrostatic Induction 52
 2.1.3 Faraday's "Ice-Pail" Experiment 53

2.2 THE COULOMB FORCE LAW BETWEEN STATIONARY CHARGES 54
 2.2.1 Coulomb's Law 54
2.2.2 Units 55
2.2.3 The Electric Field 56
2.2.4 Superposition 57

2.3 CHARGE DISTRIBUTIONS 59
2.3.1 Line, Surface, and Volume Charge Distributions 60
2.3.2 The Electric Field Due to a Charge Distribution 63
2.3.3 Field Due to an Infinitely Long Line Charge 64
2.3.4 Field Due to Infinite Sheets of Surface Charge 65
(a) Single Sheet 65
(b) Parallel Sheets of Opposite Sign 67
(c) Uniformly Charged Volume 68
2.3.5 Hoops of Line Charge 69
(a) Single Hoop 69
(b) Disk of Surface Charge 69
(c) Hollow Cylinder of Surface Charge 71
(d) Cylinder of Volume Charge 72

2.4 GAUSS'S LAW 72
2.4.1 Properties of the Vector Distance Between two Points r_{QP} 72
(a) r_{QP} 72
(b) Gradient of the Reciprocal Distance, $\nabla(1/r_{QP})$ 73
(c) Laplacian of the Reciprocal Distance 73
2.4.2 Gauss's Law In Integral Form 74
(a) Point Charge Inside or Outside a Closed Volume 74
(b) Charge Distributions 75
2.4.3 Spherical Symmetry 76
(a) Surface Charge 76
(b) Volume Charge Distribution 79
2.4.4 Cylindrical Symmetry 80
(a) Hollow Cylinder of Surface Charge 80
(b) Cylinder of Volume Charge 82
2.4.5 Gauss's Law and the Divergence Theorem 82
2.4.6 Electric Field Discontinuity Across a Sheet of Surface Charge 83

2.5 THE ELECTRIC POTENTIAL 84
2.5.1 Work Required to Move a Point Charge 84
2.5.2 The Electric Field and Stokes' Theorem 85
2.5.3 The Potential and the Electric Field 86
2.5.4 Finite Length Line Charge 88
2.5.5 Charged Spheres 90
(a) Surface Charge 90
(b) Volume Charge 91
(c) Two Spheres 92
2.5.6 Poisson's and Laplace's Equations 93

2.6 THE METHOD OF IMAGES WITH LINE CHARGES AND CYLINDERS 93
2.6.1 Two Parallel Line Charges 93
2.6.2 The Method of Images
 (a) General Properties 96
 (b) Line Charge Near a Conducting Plane 96
2.6.3 Line Charge and Cylinder 97
2.6.4 Two Wire Line
 (a) Image Charges 99
 (b) Force of Attraction 100
 (c) Capacitance Per Unit Length 101

2.7 THE METHOD OF IMAGES WITH POINT CHARGES AND SPHERES 103
2.7.1 Point Charge and a Grounded Sphere 103
2.7.2 Point Charge Near a Grounded Plane 106
2.7.3 Sphere With Constant Charge 109
2.7.4 Constant Voltage Sphere 110

PROBLEMS 110

Chapter 3—POLARIZATION AND CONDUCTION 135
3.1 POLARIZATION 136
3.1.1 The Electric Dipole 137
3.1.2 Polarization Charge 140
3.1.3 The Displacement Field 143
3.1.4 Linear Dielectrics
 (a) Polarizability 143
 (b) The Local Electric Field 145
3.1.5 Spontaneous Polarization
 (a) Ferro-electrics 149
 (b) Electrets 151

3.2 CONDUCTION 152
3.2.1 Conservation of Charge 152
3.2.2 Charged Gas Conduction Models
 (a) Governing Equations 154
 (b) Drift-Diffusion Conduction 156
 (c) Ohm's Law 159
 (d) Superconductors 160

3.3 FIELD BOUNDARY CONDITIONS 161
3.3.1 Tangential Component of E 162
3.3.2 Normal Component of D 163
3.3.3 Point Charge Above a Dielectric Boundary 164
3.3.4 Normal Component of P and $\varepsilon_0 E$ 165
3.3.5 Normal Component of J 168

3.4 RESISTANCE 169
3.4.1 Resistance Between Two Electrodes 169
3.4.2 Parallel Plate Resistor 170
3.4.3 Coaxial Resistor 172
3.4.4 Spherical Resistor 173
3.5 CAPACITANCE 173
3.5.1 Parallel Plate Electrodes 173
3.5.2 Capacitance for any Geometry 177
3.5.3 Current Flow Through a Capacitor 178
3.5.4 Capacitance of Two Contacting Spheres 178
3.6 LOSSY MEDIA 181
3.6.1 Transient Charge Relaxation 182
3.6.2 Uniformly Charged Sphere 183
3.6.3 Series Lossy Capacitor 184
(a) Charging Transient 184
(b) Open Circuit 187
(c) Short Circuit 188
(d) Sinusoidal Steady State 188
3.6.4 Distributed Systems 189
(a) Governing Equations 189
(b) Steady State 191
(c) Transient Solution 192
3.6.5 Effects of Convection 194
3.6.6 The Earth and Its Atmosphere as a Leaky Spherical Capacitor 195
3.7 FIELD-DEPENDENT SPACE CHARGE DISTRIBUTIONS 197
3.7.1 Space Charge Limited Vacuum Tube Diode 198
3.7.2 Space Charge Limited Conduction in Dielectrics 201
3.8 ENERGY STORED IN A DIELECTRIC MEDIUM 204
3.8.1 Work Necessary to Assemble a Distribution of Point Charges 204
(a) Assembling the Charges 204
(b) Binding Energy of a Crystal 205
3.8.2 Work Necessary to Form a Continuous Charge Distribution 206
3.8.3 Energy Density of the Electric Field 208
3.8.4 Energy Stored in Charged Spheres 210
(a) Volume Charge 210
(b) Surface Charge 210
(c) Binding Energy of an Atom 211
3.8.5 Energy Stored in a Capacitor 212
3.9 FIELDS AND THEIR FORCES 213
3.9.1 Force Per Unit Area On a Sheet of Surface Charge 213
3.9.2 Forces On a Polarized Medium 215
(a) Force Density 215
(b) Permanently Polarized Medium 216
(c) Linearly Polarized Medium 218
Chapter 4—ELECTRIC FIELD BOUNDARY VALUE PROBLEMS

4.1 THE UNIQUENESS THEOREM

4.2 BOUNDARY VALUE PROBLEMS IN CARTESIAN GEOMETRIES

4.2.1 Separation of Variables

4.2.2 Zero Separation Constant Solutions
 (a) Hyperbolic Electrodes
 (b) Resistor In an Open Box

4.2.3 Nonzero Separation Constant Solutions

4.2.4 Spatially Periodic Excitation

4.2.5 Rectangular Harmonics

4.2.6 Three-Dimensional Solutions

4.3 SEPARATION OF VARIABLES IN CYLINDRICAL GEOMETRY

4.3.1 Polar Solutions

4.3.2 Cylinder in a Uniform Electric Field
 (a) Field Solutions
 (b) Field Line Plotting

4.3.3 Three-Dimensional Solutions

4.3.4 High Voltage Insulator Bushing

4.4 PRODUCT SOLUTIONS IN SPHERICAL GEOMETRY

4.4.1 One-Dimensional Solutions

4.4.2 Axisymmetric Solutions

4.4.3 Conducting Spheres in a Uniform Field
 (a) Field Solutions
 (b) Field Line Plotting

4.4.4 Charged Particle Precipitation Onto a Sphere

4.5 A NUMERICAL METHOD—SUCCESSIVE RELAXATION

4.5.1 Finite Difference Expansions

4.5.2 Potential Inside a Square Box

PROBLEMS

Chapter 5—THE MAGNETIC FIELD

5.1 FORCES ON MOVING CHARGES
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.1</td>
<td>The Lorentz Force Law</td>
<td>314</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Charge Motions in a Uniform Magnetic Field</td>
<td>316</td>
</tr>
<tr>
<td>5.1.3</td>
<td>The Mass Spectrograph</td>
<td>318</td>
</tr>
<tr>
<td>5.1.4</td>
<td>The Cyclotron</td>
<td>319</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Hall Effect</td>
<td>321</td>
</tr>
<tr>
<td>5.2</td>
<td>MAGNETIC FIELD DUE TO CURRENTS</td>
<td>322</td>
</tr>
<tr>
<td>5.2.1</td>
<td>The Biot–Savart Law</td>
<td>322</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Line Currents</td>
<td>324</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Current Sheets</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>(a) Single Sheet of Surface Current</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>(b) Slab of Volume Current</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>(c) Two Parallel Current Sheets</td>
<td>328</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Hoops of Line Current</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>(a) Single Hoop</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>(b) Two Hoops (Helmholtz Coil)</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td>(c) Hollow Cylinder of Surface Current</td>
<td>331</td>
</tr>
<tr>
<td>5.3</td>
<td>DIVERGENCE AND CURL OF THE MAGNETIC FIELD</td>
<td>332</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Gauss's Law for the Magnetic Field</td>
<td>332</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Ampere's Circuital Law</td>
<td>333</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Currents With Cylindrical Symmetry</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td>(a) Surface Current</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td>(b) Volume Current</td>
<td>336</td>
</tr>
<tr>
<td>5.4</td>
<td>THE VECTOR POTENTIAL</td>
<td>336</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Uniqueness</td>
<td>336</td>
</tr>
<tr>
<td>5.4.2</td>
<td>The Vector Potential of a Current Distribution</td>
<td>338</td>
</tr>
<tr>
<td>5.4.3</td>
<td>The Vector Potential and Magnetic Flux</td>
<td>338</td>
</tr>
<tr>
<td></td>
<td>(a) Finite Length Line Current</td>
<td>339</td>
</tr>
<tr>
<td></td>
<td>(b) Finite Width Surface Current</td>
<td>341</td>
</tr>
<tr>
<td></td>
<td>(c) Flux Through a Square Loop</td>
<td>342</td>
</tr>
<tr>
<td>5.5</td>
<td>MAGNETIZATION</td>
<td>343</td>
</tr>
<tr>
<td>5.5.1</td>
<td>The Magnetic Dipole</td>
<td>344</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Magnetization Currents</td>
<td>346</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Magnetic Materials</td>
<td>349</td>
</tr>
<tr>
<td></td>
<td>(a) Diamagnetism</td>
<td>349</td>
</tr>
<tr>
<td></td>
<td>(b) Paramagnetism</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>(c) Ferromagnetism</td>
<td>356</td>
</tr>
<tr>
<td>5.6</td>
<td>BOUNDARY CONDITIONS</td>
<td>359</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Tangential Component of (\mathbf{H})</td>
<td>359</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Tangential Component of (\mathbf{M})</td>
<td>360</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Normal Component of (\mathbf{B})</td>
<td>360</td>
</tr>
<tr>
<td>5.7</td>
<td>MAGNETIC FIELD BOUNDARY VALUE PROBLEMS</td>
<td>361</td>
</tr>
<tr>
<td>5.7.1</td>
<td>The Method of Images</td>
<td>361</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Sphere in a Uniform Magnetic Field</td>
<td>364</td>
</tr>
<tr>
<td>5.8</td>
<td>MAGNETIC FIELDS AND FORCES</td>
<td>368</td>
</tr>
</tbody>
</table>
6.4.2 The Magnetic Diffusion Equation 437
6.4.3 Transient Solution With No Motion
 \((U = 0)\) 438
6.4.4 The Sinusoidal Steady State (Skin Depth) 442
6.4.5 Effects of Convection 444
6.4.6 A Linear Induction Machine 446
6.4.7 Superconductors 450
6.5 ENERGY STORED IN THE MAGNETIC FIELD 451
 6.5.1 A Single Current Loop 451
 (a) Electrical Work 452
 (b) Mechanical Work 453
 6.5.2 Energy and Inductance 454
 6.5.3 Current Distributions 454
 6.5.4 Magnetic Energy Density 455
 6.5.5 The Coaxial Cable 456
 (a) External Inductance 456
 (b) Internal Inductance 457
 6.5.6 Self-Inductance, Capacitance, and Resistance 458
6.6 THE ENERGY METHOD FOR FORCES 460
 6.6.1 The Principle of Virtual Work 460
 6.6.2 Circuit Viewpoint 461
 6.6.3 Magnetization Force 464
PROBLEMS 465

Chapter 7—ELECTRODYNAMICS—FIELDS AND WAVES 487
7.1 MAXWELL'S EQUATIONS 488
 7.1.1 Displacement Current Correction to Ampere's Law 488
 7.1.2 Circuit Theory as a Quasi-static Approximation 490
7.2 CONSERVATION OF ENERGY 490
 7.2.1 Poynting's Theorem 490
 7.2.2 A Lossy Capacitor 491
 7.2.3 Power in Electric Circuits 493
 7.2.4 The Complex Poynting's Theorem 494
7.3 TRANSVERSE ELECTROMAGNETIC WAVES 496
 7.3.1 Plane Waves 496
 7.3.2 The Wave Equation 497
 (a) Solutions 497
 (b) Properties 499
 7.3.3 Sources of Plane Waves 500
 7.3.4 A Brief Introduction to the Theory of Relativity 503
7.4 SINUSOIDAL TIME VARIATIONS 505
 7.4.1 Frequency and Wavenumber 505
7.4.2 Doppler Frequency Shifts 507
7.4.3 Ohmic Losses 508
(a) Low Loss Limit 509
(b) Large Loss Limit 511
7.4.4 High-Frequency Wave Propagation in Media 511
7.4.5 Dispersive Media 512
7.4.6 Polarization 514
(a) Linear Polarization 515
(b) Circular Polarization 515
7.4.7 Wave Propagation in Anisotropic Media 516
(a) Polarizers 517
(b) Double Refraction (Birefringence) 518
7.5 NORMAL INCIDENCE ONTO A PERFECT CONDUCTOR 520
7.6 NORMAL INCIDENCE ONTO A DIELECTRIC 522
7.6.1 Lossless Dielectric 522
7.6.2 Time-Average Power Flow 524
7.6.3 Lossy Dielectric 524
(a) Low Losses 525
(b) Large Losses 525
7.7 UNIFORM AND NONUNIFORM PLANE WAVES 529
7.7.1 Propagation at an Arbitrary Angle 529
7.7.2 The Complex Propagation Constant 530
7.7.3 Nonuniform Plane Waves 532
7.8 OBLIQUE INCIDENCE ONTO A PERFECT CONDUCTOR 534
7.8.1 E Field Parallel to the Interface 534
7.8.2 H Field Parallel to the Interface 536
7.9 OBLIQUE INCIDENCE ONTO A DIELECTRIC 538
7.9.1 E Parallel to the Interface 538
7.9.2 Brewster’s Angle of No Reflection 540
7.9.3 Critical Angle of Transmission 541
7.9.4 H Field Parallel to the Boundary 542
7.10 APPLICATIONS TO OPTICS 544
7.10.1 Reflections from a Mirror 545
7.10.2 Lateral Displacement of a Light Ray 545
7.10.3 Polarization by Reflection 546
7.10.4 Light Propagation in Water 548
(a) Submerged Source 548
(b) Fish Below a Boat 548
7.10.5 Totally Reflecting Prisms 549
7.10.6 Fiber Optics 550
(a) Straight Light Pipe 550
(b) Bent Fibers 551
PROBLEMS 552
Chapter 8—GUIDED ELECTROMAGNETIC WAVES

8.1 THE TRANSMISSION LINE EQUATIONS

8.1.1 The Parallel Plate Transmission Line
8.1.2 General Transmission Line Structures
8.1.3 Distributed Circuit Representation
8.1.4 Power Flow
8.1.5 The Wave Equation

8.2 TRANSMISSION LINE TRANSIENT WAVES

8.2.1 Transients on Infinitely Long Transmission Lines
8.2.2 Reflections from Resistive Terminations
 (a) Reflection Coefficient
 (b) Step Voltage
8.2.3 Approach to the dc Steady State
8.2.4 Inductors and Capacitors as Quasi-static Approximations to Transmission Lines
8.2.5 Reflections from Arbitrary Terminations

8.3 SINUSOIDAL TIME VARIATIONS

8.3.1 Solutions to the Transmission Line Equations
8.3.2 Lossless Terminations
 (a) Short Circuited Line
 (b) Open Circuited Line
8.3.3 Reactive Circuit Elements as Approximations to Short Transmission Lines
8.3.4 Effects of Line Losses
 (a) Distributed Circuit Approach
 (b) Distortionless Lines
 (c) Fields Approach

8.4 ARBITRARY IMPEDANCE TERMINATIONS

8.4.1 The Generalized Reflection Coefficient
8.4.2 Simple Examples
 (a) Load Impedance Reflected Back to the Source
 (b) Quarter Wavelength Matching
8.4.3 The Smith Chart
8.4.4 Standing Wave Parameters

8.5 STUB TUNING

8.5.1 Use of the Smith Chart for Admittance Calculations
8.5.2 Single-Stub Matching
8.5.3 Double-Stub Matching

8.6 THE RECTANGULAR WAVEGUIDE

8.6.1 Governing Equations
8.6.2 Transverse Magnetic (TM) Modes
8.6.3 Transverse Electric (TE) Modes 635
8.6.4 Cut-Off 638
8.6.5 Waveguide Power Flow 641
 (a) Power Flow for the TM Modes 641
 (b) Power Flow for the TE Modes 642
8.6.6 Wall Losses 643

8.7 DIELECTRIC WAVEGUIDE 644
8.7.1 TM Solutions 644
 (a) Odd Solutions 645
 (b) Even Solutions 647
8.7.2 TE Solutions 647
 (a) Odd Solutions 647
 (b) Even Solutions 648

PROBLEMS 649

Chapter 9—RADIATION 663
9.1 THE RETARDED POTENTIALS 664
 9.1.1 Nonhomogeneous Wave Equations 664
 9.1.2 Solutions to the Wave Equation 666
9.2 RADIATION FROM POINT DIPOLES 667
 9.2.1 The Electric Dipole 667
 9.2.2 Alternate Derivation Using the Scalar Potential 669
 9.2.3 The Electric and Magnetic Fields 670
 9.2.4 Electric Field Lines 671
 9.2.5 Radiation Resistance 674
 9.2.6 Rayleigh Scattering (or why is the sky blue?) 677
 9.2.7 Radiation from a Point Magnetic Dipole 679
9.3 POINT DIPOLE ARRAYS 681
 9.3.1 A Simple Two Element Array 681
 (a) Broadside Array 683
 (b) End-fire Array 685
 (c) Arbitrary Current Phase 685
 9.3.2 An N Dipole Array 685
9.4 LONG DIPOLE ANTENNAS 687
 9.4.1 Far Field Solution 688
 9.4.2 Uniform Current 690
 9.4.3 Radiation Resistance 691

PROBLEMS

SOLUTIONS TO SELECTED PROBLEMS 699

INDEX 711
Resource: Electromagnetic Field Theory: A Problem Solving Approach
Markus Zahn

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.