Principles of Computer System Design
An Introduction

Complete Table of Contents

Jerome H. Saltzer
M. Frans Kaashoek

Massachusetts Institute of Technology

Version 5.0
Contents

PART I [In Printed Textbook]

<table>
<thead>
<tr>
<th>List of Sidebars</th>
<th>xix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xxvii</td>
</tr>
<tr>
<td>Where to Find Part II and other On-line Materials</td>
<td>xxxvii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xlix</td>
</tr>
<tr>
<td>Computer System Design Principles</td>
<td>xliii</td>
</tr>
</tbody>
</table>

CHAPTER 1 Systems

Overview ... 2

1.1. Systems and Complexity 3
 1.1.1 Common Problems of Systems in Many Fields 3
 1.1.2 Systems, Components, Interfaces and Environments 8
 1.1.3 Complexity .. 10

1.2. Sources of Complexity 13
 1.2.1 Cascading and Interacting Requirements 13
 1.2.2 Maintaining High Utilization 17

1.3. Coping with Complexity I 19
 1.3.1 Modularity .. 19
 1.3.2 Abstraction ... 20
 1.3.3 Layering ... 24
 1.3.4 Hierarchy ... 25
 1.3.5 Putting it Back Together: Names Make Connections 26

1.4. Computer Systems are the Same but Different 27
 1.4.1 Computer Systems Have No Nearby Bounds on Composition 28
 1.4.2 d(technology)/dt is Unprecedented 31

1.5. Coping with Complexity II 35
 1.5.1 Why Modularity, Abstraction, Layering, and Hierarchy aren’t Enough ... 36
 1.5.2 Iteration .. 36
 1.5.3 Keep it Simple ... 39

What the Rest of this Book is about 40
Exercises .. 41
Contents

CHAPTER 2 Elements of Computer System Organization

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>43</td>
</tr>
<tr>
<td>2.1. The Three Fundamental Abstractions</td>
<td>44</td>
</tr>
<tr>
<td>2.1.1 Memory</td>
<td>45</td>
</tr>
<tr>
<td>2.1.2 Interpreters</td>
<td>45</td>
</tr>
<tr>
<td>2.1.3 Communication Links</td>
<td>53</td>
</tr>
<tr>
<td>2.2. Naming in Computer Systems</td>
<td>59</td>
</tr>
<tr>
<td>2.2.1 The Naming Model</td>
<td>60</td>
</tr>
<tr>
<td>2.2.2 Default and Explicit Context References</td>
<td>61</td>
</tr>
<tr>
<td>2.2.3 Path Names, Naming Networks, and Recursive Name Resolution</td>
<td>66</td>
</tr>
<tr>
<td>2.2.4 Multiple Lookup: Searching through Layered Contexts</td>
<td>71</td>
</tr>
<tr>
<td>2.2.5 Comparing Names</td>
<td>73</td>
</tr>
<tr>
<td>2.2.6 Name Discovery</td>
<td>75</td>
</tr>
<tr>
<td>2.3. Organizing Computer Systems with Names and Layers</td>
<td>76</td>
</tr>
<tr>
<td>2.3.1 A Hardware Layer: The Bus</td>
<td>78</td>
</tr>
<tr>
<td>2.3.2 A Software Layer: The File Abstraction</td>
<td>80</td>
</tr>
<tr>
<td>2.4. Looking Back and Ahead</td>
<td>87</td>
</tr>
<tr>
<td>2.5. Case Study: UNIX® File System Layering and Naming</td>
<td>90</td>
</tr>
<tr>
<td>2.5.1 Application Programming Interface for the UNIX File System</td>
<td>91</td>
</tr>
<tr>
<td>2.5.2 The Block Layer</td>
<td>93</td>
</tr>
<tr>
<td>2.5.3 The File Layer</td>
<td>95</td>
</tr>
<tr>
<td>2.5.4 The Inode Number Layer</td>
<td>96</td>
</tr>
<tr>
<td>2.5.5 The File Name Layer</td>
<td>96</td>
</tr>
<tr>
<td>2.5.6 The Path Name Layer</td>
<td>98</td>
</tr>
<tr>
<td>2.5.7 Links</td>
<td>99</td>
</tr>
<tr>
<td>2.5.8 Renaming</td>
<td>101</td>
</tr>
<tr>
<td>2.5.9 The Absolute Path Name Layer</td>
<td>102</td>
</tr>
<tr>
<td>2.5.10 The Symbolic Link Layer</td>
<td>104</td>
</tr>
<tr>
<td>2.5.11 Implementing the File System API</td>
<td>106</td>
</tr>
<tr>
<td>2.5.12 The Shell, Implied Contexts, Search Paths, and Name Discovery</td>
<td>110</td>
</tr>
<tr>
<td>2.5.13 Suggestions for Further Reading</td>
<td>112</td>
</tr>
<tr>
<td>Exercises</td>
<td>112</td>
</tr>
</tbody>
</table>

CHAPTER 3 The Design of Naming Schemes

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>115</td>
</tr>
<tr>
<td>3.1. Considerations in the Design of Naming Schemes</td>
<td>115</td>
</tr>
<tr>
<td>3.1.1 Modular Sharing</td>
<td>116</td>
</tr>
</tbody>
</table>
3.1.2 Metadata and Name Overloading 120
3.1.3 Addresses: Names that Locate Objects 122
3.1.4 Generating Unique Names 124
3.1.5 Intended Audience and User-Friendly Names 127
3.1.6 Relative Lifetimes of Names, Values, and Bindings 129
3.1.7 Looking Back and Ahead: Names are a Basic System Component 131

3.2 Case Study: The Uniform Resource Locator (URL) 132
3.2.1 Surfing as a Referential Experience; Name Discovery 132
3.2.2 Interpretation of the URL 133
3.2.3 URL Case Sensitivity 134
3.2.4 Wrong Context References for a Partial URL 135
3.2.5 Overloading of Names in URLs 137

3.3 War Stories: Pathologies in the Use of Names 138
3.3.1 A Name Collision Eliminates Smiling Faces 139
3.3.2 Fragile Names from Overloading, and a Market Solution ... 139
3.3.3 More Fragile Names from Overloading, with Market Disruption 140
3.3.4 Case-Sensitivity in User-Friendly Names 141
3.3.5 Running Out of Telephone Numbers 142

Exercises ... 144

CHAPTER 4 Enforcing Modularity with Clients and Services 147
4.1 Client/service organization 149
4.1.1 From soft modularity to enforced modularity 149
4.1.2 Client/service organization 155
4.1.3 Multiple clients and services 163
4.1.4 Trusted intermediaries 163
4.1.5 A simple example service 165
4.2 Communication between client and service 167
4.2.1 Remote procedure call (RPC) 167
4.2.2 RPCs are not identical to procedure calls 169
4.2.3 Communicating through an intermediary 172
4.3 Summary and the road ahead 173
4.4 Case study: The Internet Domain Name System (DNS) 175
4.4.1 Name resolution in DNS 176
4.4.2 Hierarchical name management 180
4.4.3 Other features of DNS 181
Contents

CHAPTER 5 Enforcing Modularity with Virtualization

Overview .. 199

5.1. Client/Service Organization within a Computer using Virtualization 200
 5.1.1 Abstractions for Virtualizing Computers .. 201
 5.1.1.1 Threads ... 202
 5.1.1.2 Virtual Memory ... 203
 5.1.1.3 Bounded Buffer ... 204
 5.1.1.4 Operating System Interface ... 205
 5.1.2 Emulation and Virtual Machines .. 206
 5.1.3 Roadmap: Step-by-Step Virtualization .. 207

5.2. Virtual Links using send, receive, and a Bounded Buffer 208
 5.2.1 An Interface for send and receive with Bounded Buffers 209
 5.2.2 Sequence Coordination with a Bounded Buffer 210
 5.2.3 Race Conditions .. 211
 5.2.4 Locks and Before-or-After Actions ... 212
 5.2.5 Deadlock .. 213
 5.2.6 Implementing acquire and release .. 214
 5.2.7 Implementing a Before-or-After Action Using the One-Writer Principle .. 215
 5.2.8 Coordination between Synchronous Islands with Asynchronous Connections .. 216

5.3. Enforcing Modularity in Memory .. 217
 5.3.1 Enforcing Modularity with Domains ... 218
 5.3.2 Controlled Sharing using Several Domains 219
 5.3.3 More Enforced Modularity with Kernel and User Mode 220
 5.3.4 Gates and Changing Modes .. 221
 5.3.5 Enforcing Modularity for Bounded Buffers 222

4.4.4 Name discovery in DNS .. 183
4.4.5 Trustworthiness of DNS responses .. 184

4.5. Case study: The Network File System (NFS) .. 185
 4.5.1 Naming remote files and directories ... 186
 4.5.2 The NFS remote procedure calls ... 187
 4.5.3 Extending the UNIX file system to support NFS 188
 4.5.4 Coherence ... 189
 4.5.5 NFS version 3 and beyond ... 190

Exercises .. 191
5.3.6 The Kernel ... 238
5.4. Virtualizing Memory .. 242
 5.4.1 Virtualizing Addresses ... 243
 5.4.2 Translating Addresses using a Page Map 245
 5.4.3 Virtual Address Spaces .. 248
 5.4.3.1 Primitives for Virtual Address Spaces 248
 5.4.3.2 The Kernel and Address Spaces 250
 5.4.3.3 Discussion .. 251
 5.4.4 Hardware versus Software and the Translation Look-Aside Buffer 252
 5.4.5 Segments (Advanced Topic) .. 253
5.5. Virtualizing Processors using Threads 255
 5.5.1 Sharing a processor among multiple threads 255
 5.5.2 Implementing YIELD .. 260
 5.5.3 Creating and Terminating Threads 264
 5.5.4 Enforcing Modularity with Threads: Preemptive Scheduling 269
 5.5.5 Enforcing Modularity with Threads and Address Spaces 271
 5.5.6 Layering Threads ... 271
5.6. Thread Primitives for Sequence Coordination 273
 5.6.1 The Lost Notification Problem 273
 5.6.2 Avoiding the Lost Notification Problem with Eventcounts and
 Sequencers .. 275
 5.6.3 Implementing AWAIT, ADVANCE, TICKET, and READ (Advanced
 Topic) ... 280
 5.6.4 Polling, Interrupts, and Sequence coordination 282
5.7. Case study: Evolution of Enforced Modularity in the Intel x86 284
 5.7.1 The early designs: no support for enforced modularity 285
 5.7.2 Enforcing Modularity using Segmentation 286
 5.7.3 Page-Based Virtual Address Spaces 287
 5.7.4 Summary: more evolution .. 288
5.8. Application: Enforcing Modularity using Virtual Machines 290
 5.8.1 Virtual Machine Uses .. 290
 5.8.2 Implementing Virtual Machines 291
 5.8.3 Virtualizing Example .. 293
Exercises ... 294

CHAPTER 6 Performance .. 299

Overview ... 300
Contents

6.1. Designing for Performance .. 300
 6.1.1 Performance Metrics .. 302
 6.1.1.1 Capacity, Utilization, Overhead, and Useful Work 302
 6.1.1.2 Latency .. 302
 6.1.1.3 Throughput ... 303
 6.1.2 A Systems Approach to Designing for Performance 304
 6.1.3 Reducing latency by exploiting workload properties 306
 6.1.4 Reducing Latency Using Concurrency 307
 6.1.5 Improving Throughput: Concurrency 309
 6.1.6 Queuing and Overload ... 311
 6.1.7 Fighting Bottlenecks ... 313
 6.1.7.1 Batching ... 314
 6.1.7.2 Dallying ... 314
 6.1.7.3 Speculation ... 314
 6.1.7.4 Challenges with Batching, Dallying, and Speculation 315
 6.1.8 An Example: the I/O bottleneck 316

6.2. Multilevel Memories ... 321
 6.2.1 Memory Characterization ... 322
 6.2.2 Multilevel Memory Management using Virtual Memory 323
 6.2.3 Adding multilevel memory management to a virtual memory .327
 6.2.4 Analyzing Multilevel Memory Systems 331
 6.2.5 Locality of reference and working sets 333
 6.2.6 Multilevel Memory Management Policies 335
 6.2.7 Comparative analysis of different policies 340
 6.2.8 Other Page-Removal Algorithms 344
 6.2.9 Other aspects of multilevel memory management 346

6.3. Scheduling ... 347
 6.3.1 Scheduling Resources ... 348
 6.3.2 Scheduling metrics ... 349
 6.3.3 Scheduling Policies .. 352
 6.3.3.1 First-Come, First-Served 353
 6.3.3.2 Shortest-job-first .. 354
 6.3.3.3 Round-Robin .. 355
 6.3.3.4 Priority Scheduling .. 357
 6.3.3.5 Real-time Schedulers 359
6.3.4 Case study: Scheduling the Disk Arm ... 360
Exercises ... 362
About Part II .. 369
Appendix A: The Binary Classification Trade-off ... 371
Suggestions for Further Reading .. 375
Problem Sets for Part I ... 425
Glossary .. 475
Index of Concepts ... 513

Part II [On-Line]

CHAPTER 7 The Network as a System and as a System Component ... 7–1

Overview ... 7–2
7.1. Interesting Properties of Networks ... 7–3
 7.1.1 Isochronous and Asynchronous Multiplexing 7–5
 7.1.2 Packet Forwarding; Delay ... 7–7
 7.1.3 Buffer Overflow and Discarded Packets 7–9
 7.1.4 Duplicate Packets and Duplicate Suppression 7–11
 7.1.5 Damaged Packets and Broken Links 7–13
 7.1.6 Reordered Delivery ... 7–15
 7.1.7 Summary of Interesting Properties and the Best-Effort Contract 7–17
7.2. Getting Organized: Layers ... 7–19
 7.2.1 Layers .. 7–21
 7.2.2 The Link Layer .. 7–23
 7.2.3 The Network Layer .. 7–25
 7.2.4 The End-to-End Layer ... 7–27
 7.2.5 Additional Layers and the End-to-End Argument 7–29
 7.2.6 Mapped and Recursive Applications of the Layered Model 7–31
7.3. The Link Layer ... 7–33
 7.3.1 Transmitting Digital Data in an Analog World 7–35
 7.3.2 Framing Frames ... 7–37
 7.3.3 Error Handling ... 7–39
 7.3.4 The Link Layer Interface: Link Protocols and Multiplexing 7–41
 7.3.5 Link Properties ... 7–43
7.4. The Network Layer .. 7–46
 7.4.1 Addressing Interface 7–46
 7.4.2 Managing the Forwarding Table: Routing 7–48
 7.4.3 Hierarchical Address Assignment and Hierarchical Routing 7–56
 7.4.4 Reporting Network Layer Errors 7–59
 7.4.5 Network Address Translation (An Idea That Almost Works) .. 7–61
7.5. The End-to-End Layer ... 7–62
 7.5.1 Transport Protocols and Protocol Multiplexing 7–63
 7.5.2 Assurance of At-Least-Once Delivery; the Role of Timers .. 7–67
 7.5.3 Assurance of At-Most-Once Delivery: Duplicate Suppression 7–71
 7.5.4 Division into Segments and Reassembly of Long Messages . . 7–73
 7.5.5 Assurance of Data Integrity 7–73
 7.5.6 End-to-End Performance: Overlapping and Flow Control 7–75
 7.5.6.1 Overlapping Transmissions 7–75
 7.5.6.2 Bottlenecks, Flow Control, and Fixed Windows 7–77
 7.5.6.3 Sliding Windows and Self-Pacing 7–79
 7.5.6.4 Recovery of Lost Data Segments with Windows 7–81
 7.5.7 Assurance of Stream Order, and Closing of Connections 7–82
 7.5.8 Assurance of Jitter Control 7–84
 7.5.9 Assurance of Authenticity and Privacy 7–85
7.6. A Network System Design Issue: Congestion Control 7–86
 7.6.1 Managing Shared Resources 7–86
 7.6.2 Resource Management in Networks 7–89
 7.6.3 Cross-layer Cooperation: Feedback 7–91
 7.6.4 Cross-layer Cooperation: Control 7–93
 7.6.5 Other Ways of Controlling Congestion in Networks 7–94
 7.6.6 Delay Revisited ... 7–98
7.7. Wrapping up Networks .. 7–99
7.8. Case Study: Mapping the Internet to the Ethernet ... 7–100
 7.8.1 A Brief Overview of Ethernet 7–100
 7.8.2 Broadcast Aspects of Ethernet 7–101
 7.8.3 Layer Mapping: Attaching Ethernet to a Forwarding Network .. 7–103
 7.8.4 The Address Resolution Protocol 7–105
7.9. War Stories: Surprises in Protocol Design 7–107
 7.9.1 Fixed Timers Lead to Congestion Collapse in NFS 7–107
 7.9.2 Autonet Broadcast Storms 7–108
 7.9.3 Emergent Phase Synchronization of Periodic Protocols 7–108
7.9.4 Wisconsin Time Server Meltdown 7–109
Exercises .. 7–111

CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable Components 8–1

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>8–2</td>
</tr>
<tr>
<td>8.1. Faults, Failures, and Fault Tolerant Design</td>
<td>8–3</td>
</tr>
<tr>
<td>8.1.1 Faults, Failures, and Modules</td>
<td>8–3</td>
</tr>
<tr>
<td>8.1.2 The Fault-Tolerance Design Process</td>
<td>8–6</td>
</tr>
<tr>
<td>8.2. Measures of Reliability and Failure Tolerance</td>
<td>8–8</td>
</tr>
<tr>
<td>8.2.1 Availability and Mean Time to Failure</td>
<td>8–8</td>
</tr>
<tr>
<td>8.2.2 Reliability Functions</td>
<td>8–13</td>
</tr>
<tr>
<td>8.2.3 Measuring Fault Tolerance</td>
<td>8–16</td>
</tr>
<tr>
<td>8.3. Tolerating Active Faults</td>
<td>8–16</td>
</tr>
<tr>
<td>8.3.1 Responding to Active Faults</td>
<td>8–16</td>
</tr>
<tr>
<td>8.3.2 Fault Tolerance Models</td>
<td>8–18</td>
</tr>
<tr>
<td>8.4. Systematically Applying Redundancy</td>
<td>8–20</td>
</tr>
<tr>
<td>8.4.1 Coding: Incremental Redundancy</td>
<td>8–21</td>
</tr>
<tr>
<td>8.4.2 Replication: Massive Redundancy</td>
<td>8–25</td>
</tr>
<tr>
<td>8.4.3 Voting</td>
<td>8–26</td>
</tr>
<tr>
<td>8.4.4 Repair</td>
<td>8–31</td>
</tr>
<tr>
<td>8.5. Applying Redundancy to Software and Data</td>
<td>8–36</td>
</tr>
<tr>
<td>8.5.1 Tolerating Software Faults</td>
<td>8–36</td>
</tr>
<tr>
<td>8.5.2 Tolerating Software (and other) Faults by Separating State</td>
<td>8–37</td>
</tr>
<tr>
<td>8.5.3 Durability and Durable Storage</td>
<td>8–39</td>
</tr>
<tr>
<td>8.5.4 Magnetic Disk Fault Tolerance</td>
<td>8–40</td>
</tr>
<tr>
<td>8.5.4.1 Magnetic Disk Fault Modes</td>
<td>8–41</td>
</tr>
<tr>
<td>8.5.4.2 System Faults</td>
<td>8–42</td>
</tr>
<tr>
<td>8.5.4.3 Raw Disk Storage</td>
<td>8–43</td>
</tr>
<tr>
<td>8.5.4.4 Fail-Fast Disk Storage</td>
<td>8–43</td>
</tr>
<tr>
<td>8.5.4.5 Careful Disk Storage</td>
<td>8–45</td>
</tr>
<tr>
<td>8.5.4.6 Durable Storage: RAID 1</td>
<td>8–46</td>
</tr>
<tr>
<td>8.5.4.7 Improving on RAID 1</td>
<td>8–47</td>
</tr>
<tr>
<td>8.5.4.8 Detecting Errors Caused by System Crashes</td>
<td>8–49</td>
</tr>
<tr>
<td>8.5.4.9 Still More Threats to Durability</td>
<td>8–49</td>
</tr>
</tbody>
</table>
8.6. Wrapping up Reliability. .. 8–51
 8.6.1 Design Strategies and Design Principles. 8–51
 8.6.2 How about the End-to-End Argument? 8–52
 8.6.3 A Caution on the Use of Reliability Calculations 8–53
 8.6.4 Where to Learn More about Reliable Systems 8–53
8.8. War Stories: Fault Tolerant Systems that Failed 8–57
 8.8.1 Adventures with Error Correction 8–57
 8.8.2 Risks of Rarely-Used Procedures: The National Archives 8–59
 8.8.3 Non-independent Replicas and Backhoe Fade 8–60
 8.8.4 Human Error May Be the Biggest Risk 8–61
 8.8.5 Introducing a Single Point of Failure 8–63
 8.8.6 Multiple Failures: The SOHO Mission Interruption 8–63
Exercises ... 8–64

CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After 9–1

Overview .. 9–2
9.1. Atomicity ... 9–4
 9.1.1 All-or-Nothing Atomicity in a Database 9–5
 9.1.2 All-or-Nothing Atomicity in the Interrupt Interface 9–6
 9.1.3 All-or-Nothing Atomicity in a Layered Application 9–8
 9.1.4 Some Actions With and Without the All-or-Nothing Property . 9–10
 9.1.5 Before-or-After Atomicity: Coordinating Concurrent Threads . 9–13
 9.1.6 Correctness and Serialization 9–16
 9.1.7 All-or-Nothing and Before-or-After Atomicity 9–19
9.2. All-or-Nothing Atomicity I: Concepts 9–21
 9.2.1 Achieving All-or-Nothing Atomicity: ALL_OR_NOTHING_PUT . 9–21
 9.2.2 Systematic Atomicity: Commit and the Golden Rule 9–27
 9.2.3 Systematic All-or-Nothing Atomicity: Version Histories 9–30
 9.2.4 How Version Histories are Used 9–37
9.3. All-or-Nothing Atomicity II: Pragmatics 9–38
 9.3.1 Atomicity Logs ... 9–39
 9.3.2 Logging Protocols ... 9–42
 9.3.3 Recovery Procedures .. 9–45
 9.3.4 Other Logging Configurations: Non-Volatile Cell Storage . 9–47
 9.3.5 Checkpoints .. 9–51
 9.3.6 What if the Cache is not Write-Through? (Advanced Topic) . . 9–53
9.4. Before-or-After Atomicity I: Concepts 9–54
 9.4.1 Achieving Before-or-After Atomicity: Simple Serialization 9–54
 9.4.2 The Mark-Point Discipline .. 9–58
 9.4.3 Optimistic Atomicity: Read-Capture (Advanced Topic) 9–63
 9.4.4 Does Anyone Actually Use Version Histories for Before-or-After
 Atomicity? .. 9–67
9.5. Before-or-After Atomicity II: Pragmatics 9–69
 9.5.1 Locks .. 9–70
 9.5.2 Simple Locking ... 9–72
 9.5.3 Two-Phase Locking .. 9–73
 9.5.4 Performance Optimizations ... 9–75
 9.5.5 Deadlock; Making Progress .. 9–76
9.6. Atomicity across Layers and Multiple Sites 9–79
 9.6.1 Hierarchical Composition of Transactions 9–80
 9.6.2 Two-Phase Commit .. 9–84
 9.6.3 Multiple-Site Atomicity: Distributed Two-Phase Commit 9–85
 9.6.4 The Dilemma of the Two Generals 9–90
 9.7.1 Storage that is Both All-or-Nothing and Durable 9–92
 9.8.1 Complex Instruction Sets: The General Electric 600 Line 9–95
 9.8.2 More Elaborate Instruction Sets: The IBM System/370 9–96
 9.8.3 The Apollo Desktop Computer and the Motorola M68000
 Microprocessor ... 9–97
Exercises .. 9–98

CHAPTER 10 Consistency ... 10–1

Overview .. 10–2
10.1. Constraints and Interface Consistency 10–2
10.2. Cache Coherence ... 10–4
 10.2.1 Coherence, Replication, and Consistency in a Cache 10–4
 10.2.2 Eventual Consistency with Timer Expiration 10–5
 10.2.3 Obtaining Strict Consistency with a Fluorescent Marking Pen . 10–7
 10.2.4 Obtaining Strict Consistency with the Snoopy Cache 10–7
10.3. Durable Storage Revisited: Widely Separated Replicas 10–9
 10.3.1 Durable Storage and the Durability Mantra 10–9
 10.3.2 Replicated State Machines .. 10–11
Contents

10.3.3 Shortcuts to Meet more Modest Requirements10–13
10.3.4 Maintaining Data Integrity10–15
10.3.5 Replica Reading and Majorities10–16
10.3.6 Backup ...10–17
10.3.7 Partitioning Data ..10–18
10.4. Reconciliation ..10–19
 10.4.1 Occasionally Connected Operation10–20
 10.4.2 A Reconciliation Procedure10–22
 10.4.3 Improvements ...10–25
 10.4.4 Clock Coordination ..10–26
10.5. Perspectives ..10–26
 10.5.1 History ..10–27
 10.5.2 Trade-Offs ..10–28
 10.5.3 Directions for Further Study10–31
Exercises ..10–32

CHAPTER 11 Information Security 11–1

Overview ..11–4
11.1. Introduction to Secure Systems 11–5
 11.1.1 Threat Classification ... 11–7
 11.1.2 Security is a Negative Goal11–9
 11.1.3 The Safety Net Approach ...11–10
 11.1.4 Design Principles ..11–13
 11.1.5 A High d(technology)/dt Poses Challenges For Security11–17
 11.1.6 Security Model ..11–18
 11.1.7 Trusted Computing Base ...11–26
 11.1.8 The Road Map for this Chapter11–28
11.2. Authenticating Principals ... 11–28
 11.2.1 Separating Trust from Authenticating Principals11–29
 11.2.2 Authenticating Principals ...11–30
 11.2.3 Cryptographic Hash Functions, Computationally Secure, Window of Validity11–32
 11.2.4 Using Cryptographic Hash Functions to Protect Passwords ...11–34
11.3. Authenticating Messages ...11–36
 11.3.1 Message Authentication is Different from Confidentiality 11–37
 11.3.2 Closed versus Open Designs and Cryptography11–38
 11.3.3 Key-Based Authentication Model11–41
11.3.4 Properties of SIGN and VERIFY 11–41
11.3.5 Public-key versus Shared-Secret Authentication 11–44
11.3.6 Key Distribution .. 11–45
11.3.7 Long-Term Data Integrity with Witnesses 11–48

11.4. Message Confidentiality 11–49
11.4.1 Message Confidentiality Using Encryption 11–49
11.4.2 Properties of ENCRYPT and DECRYPT 11–50
11.4.3 Achieving both Confidentiality and Authentication 11–52
11.4.4 Can Encryption be Used for Authentication? 11–53

11.5. Security Protocols .. 11–54
11.5.1 Example: Key Distribution 11–54
11.5.2 Designing Security Protocols 11–60
11.5.3 Authentication Protocols 11–63
11.5.4 An Incorrect Key Exchange Protocol 11–66
11.5.5 Diffie-Hellman Key Exchange Protocol 11–68
11.5.6 A Key Exchange Protocol Using a Public-Key System 11–69
11.5.7 Summary .. 11–71

11.6. Authorization: Controlled Sharing 11–72
11.6.1 Authorization Operations 11–73
11.6.2 The Simple Guard Model 11–73
 11.6.2.1 The Ticket System 11–74
 11.6.2.2 The List System ... 11–74
 11.6.2.3 Tickets Versus Lists, and Agencies 11–75
 11.6.2.4 Protection Groups 11–76
11.6.3 Example: Access Control in UNIX 11–76
 11.6.3.1 Principals in UNIX 11–76
 11.6.3.2 ACLs in UNIX ... 11–77
 11.6.3.3 The Default Principal and Permissions of a Process 11–78
 11.6.3.4 Authenticating Users 11–79
 11.6.3.5 Access Control Check 11–79
 11.6.3.6 Running Services .. 11–80
 11.6.3.7 Summary of UNIX Access Control 11–80
11.6.4 The Caretaker Model .. 11–80
11.6.5 Non-Discretionary Access and Information Flow Control 11–81
 11.6.5.1 Information Flow Control Example 11–83
 11.6.5.2 Covert Channels .. 11–84
11.7. Advanced Topic: Reasoning about Authentication 11–85
 11.7.1 Authentication Logic .. 11–86
 11.7.1.1 Hard-wired Approach 11–88
 11.7.1.2 Internet Approach 11–88
 11.7.2 Authentication in Distributed Systems 11–89
 11.7.3 Authentication across Administrative Realms 11–90
 11.7.4 Authenticating Public Keys 11–92
 11.7.5 Authenticating Certificates 11–94
 11.7.6 Certificate Chains ... 11–97
 11.7.6.1 Hierarchy of Central Certificate Authorities 11–97
 11.7.6.2 Web of Trust ... 11–98
11.8. Cryptography as a Building Block (Advanced Topic) 11–99
 11.8.1 Unbreakable Cipher for Confidentiality (One-Time Pad) 11–99
 11.8.2 Pseudorandom Number Generators 11–101
 11.8.2.1 Rc4: A Pseudorandom Generator and its Use 11–101
 11.8.2.2 Confidentiality using RC4 11–102
 11.8.3 Block Ciphers .. 11–103
 11.8.3.1 Advanced Encryption Standard (AES) 11–103
 11.8.3.2 Cipher-Block Chaining 11–105
 11.8.4 Computing a Message Authentication Code 11–106
 11.8.4.1 MACs Using Block Cipher or Stream Cipher 11–107
 11.8.4.2 MACs Using a Cryptographic Hash Function 11–107
 11.8.5 A Public-Key Cipher ... 11–109
 11.8.5.1 Rivest-Shamir-Adleman (RSA) Cipher 11–109
 11.8.5.2 Computing a Digital Signature 11–111
 11.8.5.3 A Public-Key Encrypting System 11–112
11.9. Summary ... 11–112
11.10. Case Study: Transport Layer Security (TLS) for the Web .. 11–116
 11.10.1 The TLS Handshake ... 11–117
 11.10.2 Evolution of TLS .. 11–120
 11.10.3 Authenticating Services with TLS 11–121
 11.10.4 User Authentication ... 11–123
11.11. War Stories: Security System Breaches 11–125
 11.11.1 Residues: Profitable Garbage 11–126
 11.11.1.1 1963: Residues in CTSS 11–126
11.11.1.2 1997: Residues in Network Packets 11–127
11.11.1.3 2000: Residues in HTTP 11–127
11.11.1.4 Residues on Removed Disks 11–128
11.11.1.5 Residues in Backup Copies 11–128
11.11.1.6 Magnetic Residues: High-Tech Garbage Analysis 11–129
11.11.1.7 2001 and 2002: More Low-tech Garbage Analysis 11–129
11.11.2 Plaintext Passwords Lead to Two Breaches 11–130
11.11.3 The Multiply Buggy Password Transformation 11–131
11.11.4 Controlling the Configuration 11–131
11.11.4.1 Authorized People Sometimes do Unauthorized Things 11–132
11.11.4.2 The System Release Trick 11–132
11.11.4.3 The Slammer Worm .. 11–132
11.11.5 The Kernel Trusts the User 11–135
11.11.5.1 Obvious Trust .. 11–135
11.11.5.2 Nonobvious Trust (Toctctou) 11–136
11.11.5.3 Toctctou 2: Virtualizing the DMA Channel 11–136
11.11.6 Technology Defeats Economic Barriers 11–137
11.11.6.1 An Attack on Our System Would be Too Expensive ... 11–137
11.11.6.2 Well, it Used to be Too Expensive 11–137
11.11.7 Mere Mortals Must be Able to Figure Out How to Use it . 11–138
11.11.8 The Web can be a Dangerous Place 11–139
11.11.9 The Reused Password 11–140
11.11.10 Signaling with Clandestine Channels 11–141
11.11.10.1 Intentionally I: Banging on the Walls 11–141
11.11.10.2 Intentionally II ... 11–141
11.11.10.3 Unintentionally ... 11–142
11.11.11 It Seems to be Working Just Fine 11–142
11.11.11.1 I Thought it was Secure 11–143
11.11.11.2 How Large is the Key Space…Really? 11–144
11.11.11.3 How Long are the Keys? 11–145
11.11.12 Injection For Fun and Profit 11–145
11.11.12.1 Injecting a Bogus Alert Message to the Operator 11–146
11.11.12.2 CardSystems Exposes 40,000,000 Credit Card Records to SQL Injection 11–146
11.11.13 Hazards of Rarely-Used Components 11–148
List of Sidebars

PART I [In Printed Textbook]

CHAPTER 1 Systems
 Sidebar 1.1: Stopping a Supertanker ... 6
 Sidebar 1.2: Why Airplanes can't Fly ... 7
 Sidebar 1.3: Terminology: Words used to Describe System Composition 9
 Sidebar 1.4: The Cast of Characters and Organizations 14
 Sidebar 1.5: How Modularity Reshaped the Computer Industry 21
 Sidebar 1.6: Why Computer Technology has Improved Exponentially with Time .. 32

CHAPTER 2 Elements of Computer System Organization
 Sidebar 2.1: Terminology: durability, stability, and persistence 46
 Sidebar 2.2: How magnetic disks work .. 49
 Sidebar 2.3: Representation: pseudocode and messages 54
 Sidebar 2.4: What is an operating system? 79
 Sidebar 2.5: Human engineering and the principle of least astonishment .. 85

CHAPTER 3 The Design of Naming Schemes
 Sidebar 3.1: Generating a unique name from a timestamp 125
 Sidebar 3.2: Hypertext links in the Shakespeare Electronic Archive 129

CHAPTER 4 Enforcing Modularity with Clients and Services
 Sidebar 4.1: Enforcing modularity with a high-level languages 154
 Sidebar 4.2: Representation: timing diagrams 156
 Sidebar 4.3: Representation: Big-Endian or Little-Endian? 158
 Sidebar 4.4: The X Window System .. 162
 Sidebar 4.5: Peer-to-peer: computing without trusted intermediaries 164

CHAPTER 5 Enforcing Modularity with Virtualization
 Sidebar 5.1: RSM, test-and-set and avoiding locks 224
 Sidebar 5.2: Constructing a before-or-after action without special instructions .. 226
 Sidebar 5.3: Bootstrapping an operating system 239
 Sidebar 5.4: Process, thread, and address space 249
 Sidebar 5.5: Position-independent programs 251
 Sidebar 5.6: Interrupts, exceptions, faults, traps, and signals 259
 Sidebar 5.7: Avoiding the lost notification problem with semaphores 277

CHAPTER 6 Performance
 Sidebar 6.1: Design hint: When in doubt use brute force 301
List of Sidebars

Sidebar 6.2	Design hint: Optimiz for the common case	307
Sidebar 6.3	Design hint: Instead of reducing latency, hide it	310
Sidebar 6.4	RAM latency	323
Sidebar 6.5	Design hint: Separate mechanism from policy	330
Sidebar 6.6	OPT is a stack algorithm and optimal	343
Sidebar 6.7	Receive livelock	350
Sidebar 6.8	Priority inversion	358

Part II [On-Line]

CHAPTER 7 The Network as a System and as a System Component

- **Sidebar 7.1**: Error detection, checksums, and witnesses | 7–10
- **Sidebar 7.2**: The Internet | 7–32
- **Sidebar 7.3**: Framing phase-encoded bits | 7–37
- **Sidebar 7.4**: Shannon’s capacity theorem | 7–37
- **Sidebar 7.5**: Other end-to-end transport protocol interfaces | 7–66
- **Sidebar 7.6**: Exponentially weighted moving averages | 7–70
- **Sidebar 7.7**: What does an acknowledgment really mean? | 7–77
- **Sidebar 7.8**: The tragedy of the commons | 7–93
- **Sidebar 7.9**: Retrofitting TCP | 7–95
- **Sidebar 7.10**: The invisible hand | 7–98

CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable Components

- **Sidebar 8.1**: Reliability functions | 8–14
- **Sidebar 8.2**: Risks of manipulating MTTFs | 8–30
- **Sidebar 8.3**: Are disk system checksums a wasted effort? | 8–49
- **Sidebar 8.4**: Detecting failures with heartbeats | 8–54

CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After

- **Sidebar 9.1**: Actions and transactions | 9–4
- **Sidebar 9.2**: Events that might lead to invoking an exception handler | 9–7
- **Sidebar 9.3**: Cascaded aborts | 9–29
- **Sidebar 9.4**: The many uses of logs | 9–40
CHAPTER 10 Consistency

CHAPTER 11 Information Security

Sidebar 11.1: Privacy ... 11–7
Sidebar 11.2: Should designs and vulnerabilities be public? 11–14
Sidebar 11.3: Malware: viruses, worms, trojan horses, logic bombs, bots, etc... 11–19
Sidebar 11.4: Why are buffer overrun bugs so common? 11–23
Sidebar 11.5: Authenticating personal devices: the resurrecting duckling policy . 11–47
Sidebar 11.6: The Kerberos authentication system 11–58
Sidebar 11.7: Secure Hash Algorithm (SHA) 11–108
Sidebar 11.8: Economics of computer security 11–115