LECTURE 2: Conditioning and Bayes’ rule

- Conditional probability

- Three important tools:
 - Multiplication rule
 - Total probability theorem
 - Bayes’ rule (→ inference)
The idea of conditioning

Use new information to revise a model

Assume 12 equally likely outcomes

If told B occurred:

$$P(A) = \frac{5}{12} \quad P(B) = \frac{6}{12}$$

$$P(A \mid B) = \quad P(B \mid B) =$$
Definition of conditional probability

- \(P(A \mid B) = \) “probability of \(A \), given that \(B \) occurred”

\[
P(A \mid B) = \frac{P(A \cap B)}{P(B)}
\]

defined only when \(P(B) > 0 \)
Example: two rolls of a 4-sided die

- Let B be the event: $\min(X, Y) = 2$

 Let $M = \max(X, Y)$

 $P(M = 1 \mid B) = \boxed{\text{}}$

 $P(M = 3 \mid B) = \boxed{\text{}}$
Conditional probabilities share properties of ordinary probabilities

\[P(A \mid B) \geq 0 \quad \text{assuming } P(B) > 0 \]

\[P(\Omega \mid B) = \]

\[P(B \mid B) = \]

If \(A \cap C = \emptyset \), then \(P(A \cup C \mid B) = P(A \mid B) + P(C \mid B) \)
Models based on conditional probabilities

Event A: Airplane is flying above
Event B: Something registers on radar screen

- $P(A \cap B) =$
- $P(B) =$
- $P(A | B) =$
The multiplication rule

\[P(A | B) = \frac{P(A \cap B)}{P(B)} \]

\[P(A \cap B) = P(B) P(A | B) \]

\[= P(A) P(B | A) \]

\[P(A^c \cap B \cap C^c) = \]
Total probability theorem

- Partition of sample space into A_1, A_2, A_3
- Have $P(A_i)$, for every i
- Have $P(B \mid A_i)$, for every i

\[
P(B) = \sum_i P(A_i)P(B \mid A_i)
\]
Bayes’ rule

- Partition of sample space into A_1, A_2, A_3
- Have $P(A_i)$, for every i — initial “beliefs”
- Have $P(B \mid A_i)$, for every i

revised “beliefs,” given that B occurred:

$$P(A_i \mid B) = \frac{P(A_i)P(B \mid A_i)}{\sum_j P(A_j)P(B \mid A_j)}$$
Bayes’ rule and inference

- Thomas Bayes, presbyterian minister (c. 1701-1761)
- “Bayes’ theorem,” published posthumously
- systematic approach for incorporating new evidence

• Bayesian inference
 - initial beliefs $P(A_i)$ on possible causes of an observed event B
 - model of the world under each A_i: $P(B | A_i)$

\[A_i \xrightarrow{\text{model}} P(B | A_i) \xrightarrow{\text{inference}} B \]

- draw conclusions about causes

\[B \xrightarrow{\text{inference}} P(A_i | B) \xrightarrow{} A_i \]