LECTURE 4: Counting

Discrete uniform law
- Assume Ω consists of n equally likely elements
- Assume A consists of k elements

Then: $P(A) = \frac{\text{number of elements of } A}{\text{number of elements of } \Omega} = \frac{k}{n}$

• Basic counting principle

• Applications
 - permutations
 - combinations
 - partitions
 - number of subsets
 - binomial probabilities
Basic counting principle

4 shirts
3 ties
2 jackets

Number of possible attires?

- r stages
- n_i choices at stage i

Number of choices is:
Basic counting principle examples

• Number of license plates with 2 letters followed by 3 digits:

 • ... if repetition is prohibited:

• Permutations: Number of ways of ordering n elements:

• Number of subsets of $\{1, \ldots, n\}$:
Example

- Find the probability that:
 six rolls of a (six-sided) die all give different numbers.

(Assume all outcomes equally likely.)
Combinations

• Definition: \(\binom{n}{k} \): number of \(k \)-element subsets of a given \(n \)-element set

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!}
\]

• Two ways of constructing an ordered sequence of \(k \) distinct items:
 - Choose the \(k \) items one at a time
 - Choose \(k \) items, then order them
\[
\binom{n}{k} = \frac{n!}{k!(n-k)!}
\]

\[
\binom{n}{n} =
\]

\[
\binom{n}{0} =
\]

\[
\sum_{k=0}^{n} \binom{n}{k} =
\]
Binomial coefficient \(\binom{n}{k} \) \rightarrow \text{Binomial probabilities}

- \(n \geq 1 \) independent coin tosses; \(P(H) = p \)
- \(P(HTTHHH) = \)
- \(P(\text{particular sequence}) = \)
- \(P(\text{particular } k-\text{head sequence}) \)

\[P(k \text{ heads}) = \binom{n}{k} p^k (1 - p)^{n-k} \]
A coin tossing problem

- Given that there were 3 heads in 10 tosses, what is the probability that the first two tosses were heads?
 - event A: the first 2 tosses were heads
 - event B: 3 out of 10 tosses were heads

First solution:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} =$$

Assumptions:
- independence
- $P(H) = p$

$$P(k \text{ heads}) = \binom{n}{k} p^k (1 - p)^{n-k}$$
A coin tossing problem

- Given that there were 3 heads in 10 tosses, what is the probability that the first two tosses were heads?
 - event A: the first 2 tosses were heads
 - event B: 3 out of 10 tosses were heads

- Second solution: Conditional probability law (on B) is uniform

Assumptions:
- independence
- $P(H) = p$

$P(k \text{ heads}) = \binom{n}{k} p^k (1 - p)^{n-k}$
Partitions

- $n \geq 1$ distinct items; $r \geq 1$ persons
give n_i items to person i
- here n_1, \ldots, n_r are given nonnegative integers
- with $n_1 + \cdots + n_r = n$

- Ordering n items:
 - Deal n_i to each person i, and then order

\[
\text{number of partitions} = \frac{n!}{n_1! n_2! \cdots n_r!} \quad \text{(multinomial coefficient)}
\]
Example: 52-card deck, dealt (fairly) to four players. Find P(each player gets an ace)

- Outcomes are:
 - number of outcomes:

- Constructing an outcome with one ace for each person:
 - distribute the aces
 - distribute the remaining 48 cards

\[
\frac{4 \cdot 3 \cdot 2 \cdot \frac{48!}{12! 12! 12! 12!}}{52!} = \frac{13! 13! 13! 13!}{13! 13! 13! 13!}
\]

• Answer:
Example: 52-card deck, dealt (fairly) to four players. Find P(each player gets an ace)

A smart solution

Stack the deck, aces on top

Deal, one at a time, to available “slots”