LECTURE 5: Discrete random variables:
probability mass functions and expectations

• Random variables: the idea and the definition
 - **Discrete:** take values in finite or countable set

• Probability mass function (PMF)

• Random variable examples
 - Bernoulli
 - Uniform
 - Binomial
 - Geometric

• Expectation (mean) and its properties
 - The expected value rule
 - Linearity
Random variables: the idea

\[B = \frac{W}{H^2} \]
Random variables: the formalism

- A random variable ("r.v.") associates a value (a number) to every possible outcome
- Mathematically: A function from the sample space Ω to the real numbers
- It can take discrete or continuous values

Notation: random variable X numerical value x

- We can have several random variables defined on the same sample space
- A function of one or several random variables is also a random variable
 - meaning of $X + Y$: r.v takes value $x+y$, when X takes value x, Y takes value y
Probability mass function (PMF) of a discrete r.v. X

- It is the "probability law" or "probability distribution" of X
- If we fix some x, then "$X = x$" is an event

$$x = 5 \quad X = 5 \quad \{ \omega : X(\omega) = 5 \} = \{ a, b \}$$

$$p_X(5) = \frac{1}{2}$$

$$p_X(x) = P(X = x) = P(\{ \omega \in \Omega \text{ s.t. } X(\omega) = x \})$$

- Properties: $p_X(x) \geq 0 \quad \sum_x p_X(x) = 1$
PMF calculation

- Two rolls of a tetrahedral die
- Let every possible outcome have probability $1/16$

\[Z = X + Y \]

Find $p_Z(z)$ for all z

- repeat for all z:
 - collect all possible outcomes for which Z is equal to z
 - add their probabilities

\[
p_Z(2) = P(Z = 2) = 1/16
\]
\[
p_Z(3) = P(Z = 3) = 2/16
\]
\[
p_Z(4) = P(Z = 4) = 3/16
\]
The simplest random variable: Bernoulli with parameter $p \in [0, 1]$

$$X = \begin{cases}
1, & \text{w.p. } p \\
0, & \text{w.p. } 1 - p
\end{cases}$$

$$p_X(0) = 1 - p$$
$$p_X(1) = p$$

- Models a trial that results in success/failure, Heads/Tails, etc.
- Indicator r.v. of an event A: $I_A = 1$ iff A occurs
Discrete uniform random variable; parameters \(a, b \)

- **Parameters:** integers \(a, b; \) \(a \leq b \)
- **Experiment:** Pick one of \(a, a + 1, \ldots, b \) at random; all equally likely
- **Sample space:** \(\{a, a + 1, \ldots, b\} \)
- **Random variable** \(X: X(\omega) = \omega \)
- **Model of:** complete ignorance

\[
p_X(x) = \begin{cases}
1 & \text{for } x = a, a + 1, \ldots, b \\
\frac{1}{b - a + 1} & \text{otherwise}
\end{cases}
\]

Special case: \(a = b \)

constant/deterministic r.v.
Binomial random variable; parameters: positive integer n; $p \in [0, 1]$

- **Experiment:** n independent tosses of a coin with $P(\text{Heads}) = p$
- **Sample space:** Set of sequences of H and T, of length n
- **Random variable X:** number of Heads observed
- **Model of:** number of successes in a given number of independent trials

For $m = 3$:

$$P_X(2) = P(X = 2) = P(\text{HHH}) + P(\text{HHT}) + P(\text{HTH})$$

$$= 3p^3(1-p) = \binom{3}{2} p^2(1-p)$$

General Formula:

$$P_X(k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad \text{for } k = 0, 1, \ldots, n$$
Geometric random variable; parameter p: $0 < p \leq 1$

- **Experiment**: infinitely many independent tosses of a coin; $P(\text{Heads}) = p$
- **Sample space**: Set of infinite sequences of H and T

- **Random variable X**: number of tosses until the first Heads $X = 5$

- **Model of**: waiting times; number of trials until a success

$$p_X(k) = P(X = k) = P(T^{k-1}H) = (1-p)^{k-1}p$$

$P(\text{no Heads ever}) \leq P(T^{\infty}) = (1-p)^\infty$ \\
“$X=\infty$” \Rightarrow 0
Expectation/mean of a random variable

- **Motivation:** Play a game 1000 times. Random gain at each play described by:

- "Average" gain:

\[
\frac{1 \cdot 200 + 2 \cdot 500 + 4 \cdot 300}{1000} = 1 \cdot \frac{2}{10} + 2 \cdot \frac{5}{10} + 4 \cdot \frac{3}{10}
\]

- **Definition:** \(E[X] = \sum_x x p_X(x) \)

- **Interpretation:** Average in large number of independent repetitions of the experiment

- **Caution:** If we have an infinite sum, it needs to be well-defined. We assume \(\sum_x |x| p_X(x) < \infty \)
Expectation of a Bernoulli r.v.

\[X = \begin{cases}
1, & \text{w.p. } p \\
0, & \text{w.p. } 1 - p
\end{cases} \]

\[E[X] = 1 \cdot p + 0 \cdot (1 - p) = p \]

If \(X \) is the indicator of an event \(A \), \(X = I_A \):

\[X = 1 \text{ iff } A \text{ occurs } \quad p = P(A) \]

\[E[I_A] = P(A) \]
Expectation of a uniform r.v.

- Uniform on 0, 1, ..., n

\[p_X(x) = \frac{1}{n+1} \]

\[E[X] = \sum_{x} x p_X(x) \]

\[E[X] = 0 \cdot \frac{1}{n+1} + 1 \cdot \frac{1}{n+1} + \cdots + n \cdot \frac{1}{n+1} \]

\[= \frac{1}{n+1} (0 + 1 + \cdots + n) = \frac{1}{n+1} \cdot \frac{n(n+1)}{2} = \frac{n}{2} \]
Expectation as a population average

- n students
- Weight of ith student: x_i
- Experiment: pick a student at random, all equally likely
- Random variable X: weight of selected student
 - assume the x_i are distinct

$$p_X(x_i) = \frac{1}{n}$$

\[
E[X] = \frac{1}{n} \sum x_i \frac{1}{n} = \frac{1}{n} \sum x_i
\]
Elementary properties of expectations

- If $X \geq 0$, then $E[X] \geq 0$

 for all w: $X(w) \geq 0$

- If $a \leq X \leq b$, then $a \leq E[X] \leq b$

 for all w: $a \leq X(w) \leq b$

 $E[X] = \sum_x x p_X(x) = \sum_x a p_X(x) = a \sum_x p_X(x) = a \cdot 1 = a$

- If c is a constant, $E[c] = c$

 $E[c] = c \cdot p(c) = c$

Definition:

$E[X] = \sum_x x p_X(x)$
The expected value rule, for calculating $E[g(X)]$

- Let X be a r.v. and let $Y = g(X)$

- Averaging over y: $E[Y] = \sum_y y p_Y(y)$

 $3 \cdot (0.1 + 0.2) + 4 \cdot (0.3 + 0.4)$

- Averaging over x: $3 \cdot 0.1 + 3 \cdot 0.2 + 4 \cdot 0.3 + 4 \cdot 0.5$

$$E[Y] = E[g(X)] = \sum_x g(x) p_X(x)$$

Proof:

$$\sum_y \sum_{x: g(x) = y} g(x) p_X(x)$$

$$= \sum_y \sum_{x: g(x) = y} y p_X(x)$$

$$= \sum_y y p_Y(y) = E[Y]$$

- $E[X^2] = \sum_x x^2 p_X(x)$

- Caution: In general, $E[g(X)] \neq g(E[X])$

$$E[X^2] \neq (E[X])^2$$
Linearity of expectation: \(E[aX + b] = aE[X] + b \)

\[X = \text{salary} \quad E[X] = \text{average salary} \]
\[Y = \text{new salary} = 2X + 100 \quad E[Y] = E[2X + 100] = 2E[X] + 100 \]

- Intuitive
- Derivation, based on the expected value rule:
 \[
 E[Y] = \sum_x g(x) p_x(x) \\
 = \sum_x (ax + b) p_x(x) = a \sum_x x p_x(x) + b \sum_x p_x(x) \\
 E[g(x)] = g(E[X]) = aE[X] + b \\
 \]

exceptional \(g \)