LECTURE 12: Sums of independent random variables;
Covariance and correlation

• The PMF/PDF of $X + Y$ (X and Y independent)
 - the discrete case
 - the continuous case
 - the mechanics
 - the sum of independent normals

• Covariance and correlation
 - definitions
 - mathematical properties
 - interpretation
The distribution of $X + Y$: the discrete case

- $Z = X + Y$; X, Y independent, discrete

known PMFs

$p_Z(3) =$

\[p_Z(z) = \sum_x p_X(x) p_Y(z - x) \]
Discrete convolution mechanics

\[p_Z(z) = \sum_x p_X(x) p_Y(z-x) \]

- To find \(p_Z(3) \):

 - Flip (horizontally) the PMF of \(Y \)

 - Put it underneath the PMF of \(X \)

 - Right-shift the flipped PMF by \(3 \)

 - Cross-multiply and add

 - Repeat for other values of \(z \)
The distribution of $X + Y$: the continuous case

- $Z = X + Y$; X, Y independent, continuous known PDFs

Conditional on $X = x$:

Joint PDF of Z and X:

From joint to the marginal: $f_Z(z) = \int_{-\infty}^{\infty} f_{X,Z}(x, z) \, dx$

- Same mechanics as in discrete case (flip, shift, etc.)
The sum of independent normal r.v.'s

- $X \sim N(\mu_x, \sigma_x^2)$, $Y \sim N(\mu_y, \sigma_y^2)$, independent

$Z = X + Y$

\[
f_X(x) = \frac{1}{\sqrt{2\pi \sigma_x^2}} e^{-\frac{(x-\mu_x)^2}{2\sigma_x^2}}
\]

\[
f_Y(y) = \frac{1}{\sqrt{2\pi \sigma_y^2}} e^{-\frac{(y-\mu_y)^2}{2\sigma_y^2}}
\]

\[
f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) \, dx
\]

(algebra)

\[
f_Z(z) = \frac{1}{\sqrt{2\pi (\sigma_x^2 + \sigma_y^2)}} e^{-\frac{(z-\mu_x-\mu_y)^2}{2(\sigma_x^2 + \sigma_y^2)}}
\]

The sum of finitely many independent normals is normal
Covariance

- Zero-mean, discrete X and Y
 - if independent: $E[XY] =$

Definition for general case:

$$\text{cov}(X, Y) = E \left[(X - E[X]) \cdot (Y - E[Y]) \right]$$

- independent \Rightarrow $\text{cov}(X, Y) = 0$
 (converse is not true)
Covariance properties

\[\text{cov}(X, X) = \]

\[\text{cov}(aX + b, Y) = \]

\[\text{cov}(X, Y + Z) = \]

\[\text{cov}(X, Y) = E[XY] - E[X]E[Y] \]
The variance of a sum of random variables

\[\text{var}(X_1 + X_2) = \]
The variance of a sum of random variables

\[
\text{var}(X_1 + X_2) = \text{var}(X_1) + \text{var}(X_2) + 2 \text{cov}(X_1, X_2)
\]

\[
\text{var}(X_1 + \cdots + X_n) = \\
\sum_{i=1}^{n} \text{var}(X_i) + \sum_{\{(i,j) : i \neq j\}} \text{cov}(X_i, X_j)
\]
The Correlation coefficient

- Dimensionless version of covariance:
 \[-1 \leq \rho \leq 1 \]

- Measure of the degree of "association" between \(X \) and \(Y \)

- Independent \(\Rightarrow \rho = 0 \), "uncorrelated" (converse is not true)

- \(|\rho| = 1 \Leftrightarrow (X - \mathbb{E}[X]) = c(Y - \mathbb{E}[Y]) \) (linearly related)

- \(\text{cov}(aX + b, Y) = a \cdot \text{cov}(X, Y) \Rightarrow \rho(aX + b, Y) = \)
Proof of key properties of the correlation coefficient

\[\rho(X, Y) = \mathbb{E}\left[\frac{(X - \mathbb{E}[X])}{\sigma_X} \cdot \frac{(Y - \mathbb{E}[Y])}{\sigma_Y} \right] \]

\[-1 \leq \rho \leq 1 \]

- Assume, for simplicity, zero means and unit variances, so that \(\rho(X, Y) = \mathbb{E}[XY] \)

\[\mathbb{E}\left[(X - \rho Y)^2 \right] = \]

If \(|\rho| = 1 \), then
Interpreting the correlation coefficient

- Association does not imply causation or influence

 \[X: \text{math aptitude} \]

 \[Y: \text{musical ability} \]

- Correlation often reflects underlying, common, hidden factor

 Assume, \(Z, V, W \) are independent

 \[X = Z + V \]

 \[Y = Z + W \]

 Assume, for simplicity, that \(Z, V, W \) have zero means, unit variances

\[\rho(X, Y) = \frac{\text{cov}(X, Y)}{\sigma_X \sigma_Y} \]
Correlations matter...

- A real-estate investment company invests $10M in each of 10 states. At each state i, the return on its investment is a random variable X_i, with mean 1 and standard deviation 1.3 (in millions).

$$\text{var}(X_1 + \cdots + X_{10}) = \sum_{i=1}^{10} \text{var}(X_i) + \sum_{\{(i,j): i \neq j\}} \text{cov}(X_i, X_j)$$

- If the X_i are uncorrelated, then:

$$\text{var}(X_1 + \cdots + X_{10}) =$$

$$\sigma(X_1 + \cdots + X_{10}) =$$

- If for $i \neq j$, $\rho(X_i, X_j) = 0.9$:

$$\sigma(X_1 + \cdots + X_{10}) =$$