LECTURE 14: Introduction to Bayesian inference

• The big picture
 – motivation, applications
 – problem types (hypothesis testing, estimation, etc.)

• The general framework
 – Bayes’ rule \(\rightarrow\) posterior
 (4 versions)
 – point estimates (MAP, LMS)
 – performance measures
 (prob. of error; mean squared error)
 – examples
Inference: the big picture

Real world

Predictions

Decisions

Probability theory (Analysis)

Data

Inference/Statistics

Models
Inference then and now

- Then:
 10 patients were treated: 3 died
 10 patients were not treated: 5 died
 Therefore ...

Now:

- Big data
- Big models
- Big computers
A sample of application domains

- Design and interpretation of experiments
 - polling
A sample of application domains

- marketing, advertising
- recommendation systems
 - Netflix competition
A sample of application domains

- Finance

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.
A sample of application domains

- Life sciences
 - genomics

- neuroscience, etc., etc.
A sample of application domains

- Modeling and monitoring the oceans
- Modeling and monitoring global climate
- Modeling and monitoring pollution
- Interpreting data from physics experiments
- Interpreting astronomy data
A sample of application domains

- Signal processing
 - communication systems (noisy ...)
 - speech processing and understanding
 - image processing and understanding
 - tracking of objects
 - positioning systems (e.g., GPS)
 - detection of abnormal events
Model building versus inferring unobserved variables

\[X = aS + W \]

- **Model building:**
 - know “signal” \(S \), observe \(X \)
 - infer \(a \)

- **Variable estimation:**
 - know \(a \), observe \(X \)
 - infer \(S \)
Hypothesis testing versus estimation

- Hypothesis testing:
 - unknown takes one of few possible values
 - aim at small probability of incorrect decision

 Is it an airplane or a bird?

- Estimation:
 - numerical unknown(s)
 - aim at an estimate that is “close” to the true but unknown value
The Bayesian inference framework

- **Unknown \(\Theta \)**
 - treated as a random variable
 - prior distribution \(p_\Theta \) or \(f_\Theta \)

- **Observation \(X \)**
 - observation model \(p_{X|\Theta} \) or \(f_{X|\Theta} \)

- Use appropriate version of the Bayes rule to find \(p_{\Theta|X}(\cdot | X = x) \) or \(f_{\Theta|X}(\cdot | X = x) \)

- **Where does the prior come from?**
 - symmetry
 - known range
 - earlier studies
 - subjective or arbitrary
The output of Bayesian inference

The complete answer is a posterior distribution:
PMF \(p_{\Theta | X}(\cdot | x) \) or PDF \(f_{\Theta | X}(\cdot | x) \)

\[p_{\Theta | X}(\cdot | x) \]

\[f_{\Theta | X}(\cdot | x) \]

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.
Point estimates in Bayesian inference

The complete answer is a posterior distribution: PMF $p_{\Theta|X}(\cdot | x)$ or PDF $f_{\Theta|X}(\cdot | x)$

- Maximum a posteriori probability (MAP):
 \[p_{\Theta|X}(\theta^* | x) = \max_{\theta} p_{\Theta|X}(\theta | x) \]
 \[f_{\Theta|X}(\theta^* | x) = \max_{\theta} f_{\Theta|X}(\theta | x) \]

- Conditional expectation: $E[\Theta | X = x]$ (LMS: Least Mean Squares)

estimate: $\hat{\theta} = g(x)$ (number)

estimator: $\hat{\Theta} = g(X)$ (random variable)
Discrete Θ, discrete X

- values of Θ: alternative hypotheses

\[
p_{\Theta|X}(\theta | x) = \frac{p_{\Theta}(\theta) p_{X|\Theta}(x | \theta)}{p_{X}(x)}
\]
\[
p_{X}(x) = \sum_{\theta'} p_{\Theta}(\theta') p_{X|\Theta}(x | \theta')
\]

- conditional prob of error:
 \[
P(\hat{\Theta} \neq \Theta | X = x)
 \]
 smallest under the MAP rule

- overall probability of error:
 \[
P(\hat{\Theta} \neq \Theta) = \sum_{x} P(\hat{\Theta} \neq \Theta | X = x) p_{X}(x)
 = \sum_{\theta} P(\hat{\Theta} \neq \Theta | \Theta = \theta) p_{\Theta}(\theta)
 \]

- MAP rule: $\hat{\Theta} =$

[Diagram showing discrete distributions for Θ with values 1, 2, 3, and their corresponding probabilities 0.6, 0.3, 0.1.]
Discrete \(\Theta \), continuous \(X \)

- Standard example:
 - send signal \(\Theta \in \{1, 2, 3\} \)
 \[X = \Theta + W \]
 \(W \sim N(0, \sigma^2) \), indep. of \(\Theta \)
 \[f_{X|\Theta}(x | \theta) = f_W(x - \theta) \]

- conditional prob of error:
 \[P(\hat{\Theta} \neq \Theta | X = x) \]
 smallest under the MAP rule

- overall probability of error:
 \[P(\hat{\Theta} \neq \Theta) = \int P(\hat{\Theta} \neq \Theta | X = x) f_X(x) \, dx \]
 \[= \sum_{\theta} P(\hat{\Theta} \neq \theta | \Theta = \theta) p_\Theta(\theta) \]
Continuous Θ, continuous X

- linear normal models
 estimation of a noisy signal

 $X = \Theta + W$

 Θ and W: independent normals

 multi-dimensional versions (many normal parameters, many observations)

- estimating the parameter of a uniform

 X: uniform $[0, \Theta]$

 Θ: uniform $[0, 1]$

- $\widehat{\Theta} = g(X)$

- interested in:

 $E[(\widehat{\Theta} - \Theta)^2 \mid X = x]$

 $E[(\widehat{\Theta} - \Theta)^2]$
Inferring the unknown bias of a coin and the Beta distribution

- Standard example:
 - coin with bias Θ; prior $f_\Theta(\cdot)$
 - fix n; $K =$ number of heads
- Assume $f_\Theta(\cdot)$ is uniform in $[0, 1]$

$$f_{\Theta|K}(\theta | k) =$$

$$= \frac{1}{d(n, k)} \theta^k (1 - \theta)^{n-k}$$

“Beta distribution, with parameters $(k + 1, n - k + 1)$”

- If prior is Beta: $f_\Theta(\theta) = \frac{1}{c} \theta^\alpha (1 - \theta)^\beta$

$$f_{\Theta|K}(\theta | k) =$$

$$f_\Theta(\theta) \frac{p_{K|\Theta}(k | \theta)}{p_K(k)}$$

$$p_K(k) = \int f_\Theta(\theta') p_{K|\Theta}(k | \theta') \, d\theta'$$
Inferring the unknown bias of a coin: point estimates

- Standard example:
 - coin with bias Θ; prior $f_\Theta(\cdot)$
 - fix n; $K =$ number of heads

- Assume $f_\Theta(\cdot)$ is uniform in $[0, 1]$

$$f_{\Theta|K}(\theta \mid k) = \frac{1}{d(n, k)} \theta^k (1 - \theta)^{n-k}$$

- MAP estimate:

$$\hat{\theta}_{\text{MAP}} =$$

$$\hat{\Theta}_{\text{MAP}} =$$

$$\frac{\int_0^1 \theta^\alpha (1 - \theta)^\beta \, d\theta}{\int_0^1 \theta^{\alpha + \beta + 1} \, d\theta} = \frac{\alpha! \beta!}{(\alpha + \beta + 1)!}$$

$$E[\Theta \mid K = k] =$$
Summary

- Problem data: \(P_\Theta(\cdot), P_{X|\Theta}(\cdot \mid \cdot) \)
- Given the value \(x \) of \(X \): find, e.g., \(P_{\Theta|X}(\cdot \mid x) \)
 - using appropriate version of the Bayes rule

- Estimator \(\hat{\Theta} = g(X) \) \hspace{1cm} Estimate \(\hat{\theta} = g(x) \)
 - MAP: \(\hat{\theta}_{\text{MAP}} = g_{\text{MAP}}(x) \) maximizes \(P_{\Theta|X}(\theta \mid x) \)
 - LMS: \(\hat{\theta}_{\text{LMS}} = g_{\text{LMS}}(x) = E[\Theta \mid X = x] \)

- Performance evaluation of an estimator \(\hat{\Theta} \)
 \[P(\hat{\Theta} \neq \Theta \mid X = x) \]
 \[E[(\hat{\Theta} - \Theta)^2 \mid X = x] \]
 \[P(\hat{\Theta} \neq \Theta) \]
 \[E[(\hat{\Theta} - \Theta)^2] \]