LECTURE 20: An introduction to classical statistics

- Unknown constant \(\theta \) (not a r.v.)
- if \(\theta = E[X] \): estimate using the sample mean \((X_1 + \cdots + X_n)/n \)
 - terminology and properties
- Confidence intervals (CIs)
 - CIs using the CLT
 - CIs when the variance is unknown
- Other uses of sample means
- Maximum Likelihood estimation
Classical statistics

- Inference using the Bayes rule:
 unknown \(\Theta \) and observation \(X \) are both random variables
 - Find \(p_{\Theta|X} \)

- Classical statistics: unknown constant \(\theta \)
 - also for vectors \(X \) and \(\theta \): \(p_{X_1,\ldots,X_n}(x_1,\ldots,x_n;\theta_1,\ldots,\theta_m) \)
 - \(p_X(x;\theta) \) are NOT conditional probabilities; \(\theta \) is NOT random
 - mathematically: many models, one for each possible value of \(\theta \)
Problem types in classical statistics

- Classical statistics: unknown constant θ

 \[p_X(x; \theta) \]

- Hypothesis testing: $H_0: \theta = 1/2$ versus $H_1: \theta = 3/4$

- Composite hypotheses: $H_0: \theta = 1/2$ versus $H_1: \theta \neq 1/2$

- Estimation: design an estimator $\hat{\theta}$, to “keep estimation error $\hat{\theta} - \theta$ small”
Estimating a mean

• \(X_1, \ldots, X_n\): i.i.d., mean \(\theta\), variance \(\sigma^2\)

\[\hat{\Theta}_n = \text{sample mean} = M_n = \frac{X_1 + \cdots + X_n}{n}\]

\(\hat{\Theta}_n\): estimator (a random variable)

Properties and terminology:

• \(E[\hat{\Theta}_n] = \theta\) (unbiased)

• WLLN: \(\hat{\Theta}_n \rightarrow \theta\) (consistency)

• mean squared error (MSE): \(E[(\hat{\Theta}_n - \theta)^2]\)
On the mean squared error of an estimator

- For any estimator, using $E[Z^2] = \text{var}(Z) + (E[Z])^2$:

 $$E[(\hat{\theta} - \theta)^2] = \text{var}(\hat{\theta} - \theta) + (E[\hat{\theta} - \theta])^2 = \text{var}(\hat{\theta}) + (\text{bias})^2$$

- $\sqrt{\text{var}(\hat{\theta})}$ is called the **standard error**
Confidence intervals (CIs)

- The value of an estimator $\hat{\Theta}$ may not be informative enough

- An $1 - \alpha$ confidence interval is an interval $[\hat{\Theta}^-, \hat{\Theta}^+]$, s.t. $P(\hat{\Theta}^- \leq \theta \leq \hat{\Theta}^+) \geq 1 - \alpha$, for all θ

 - often $\alpha = 0.05$, or 0.025, or 0.01

 - interpretation is subtle
CI for the estimation of the mean

\[\Theta_n = \text{sample mean} = M_n = \frac{X_1 + \cdots + X_n}{n} \]

normal tables: \(\Phi(1.96) = 0.975 = 1 - 0.025 \)

\[P \left(\frac{\Theta_n - \theta}{\sigma/\sqrt{n}} \leq 1.96 \right) \approx 0.95 \text{ (CLT)} \]

\[P \left(\Theta_n - \frac{1.96 \sigma}{\sqrt{n}} \leq \theta \leq \Theta_n + \frac{1.96 \sigma}{\sqrt{n}} \right) \approx 0.95 \]
Confidence intervals for the mean when σ is unknown

\[\hat{\theta}_n = \text{sample mean} = M_n = \frac{X_1 + \cdots + X_n}{n} \]

\[P \left(\hat{\theta}_n - \frac{1.96 \sigma}{\sqrt{n}} \leq \theta \leq \hat{\theta}_n + \frac{1.96 \sigma}{\sqrt{n}} \right) \approx 0.95 \]

- **Option 1:** use upper bound on σ
 - if X_i Bernoulli: $\sigma \leq 1/2$

- **Option 2:** use ad hoc estimate of σ
 - if X_i Bernoulli: $\hat{\sigma} = \sqrt{\hat{\theta}_n(1 - \hat{\theta}_n)}$
Confidence intervals for the mean when σ is unknown

$$P\left(\hat{\Theta}_n - \frac{1.96\sigma}{\sqrt{n}} \leq \theta \leq \hat{\Theta}_n + \frac{1.96\sigma}{\sqrt{n}}\right) \approx 0.95$$

- **Option 3:** Use sample mean estimate of the variance

 - Two approximations involved here:
 - CLT: approximately normal
 - using estimate of σ
 - correction for second approximation (t-tables) used when n is small

Start from $\sigma^2 = E[(X_i - \theta)^2]$

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \theta)^2 \rightarrow \sigma^2$$

(but do not know θ)

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{\Theta}_n)^2 \rightarrow \sigma^2$$
Other natural estimators

- $\theta_X = \mathbb{E}[X]$
 $\hat{\Theta}_X = \frac{1}{n} \sum_{i=1}^{n} X_i$

- $\nu_X = \text{var}(X) = \mathbb{E}[(X - \theta_X)^2]$
 $\hat{\nu}_X = \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{\Theta}_X)^2$

- $\text{cov}(X, Y) = \mathbb{E}[(X - \theta_X)(Y - \theta_Y)]$
 $\hat{\text{cov}}(X, Y) = \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{\Theta}_X) (Y_i - \hat{\Theta}_Y)$

- $\rho = \frac{\text{cov}(X, Y)}{\sqrt{\nu_X} \cdot \sqrt{\nu_Y}}$
 $\hat{\rho} = \frac{\hat{\text{cov}}(X, Y)}{\sqrt{\hat{\nu}_X} \cdot \sqrt{\hat{\nu}_Y}}$

- next steps: find the distribution of $\hat{\Theta}$, MSE, confidence intervals,...
Maximum Likelihood (ML) estimation

- $\theta = \mathbb{E}[g(X)]$
 $\hat{\Theta} = \frac{1}{n} \sum_{i=1}^{n} g(X_i)$

- Pick θ that "makes data most likely"

 $\hat{\theta}_{ML} = \arg \max_{\theta} p_X(x; \theta)$

 - also applies when x, θ are vectors or x is continuous

- compare to Bayesian posterior:

 $p_{\Theta|X}(\theta | x) = \frac{p_{X|\Theta}(x | \theta) p_{\Theta}(\theta)}{p_X(x)}$

 - interpretation is very different
Comments on ML

- maximize $p_X(x; \theta)$
- maximization is usually done numerically
- if have n i.i.d. data drawn from model $p_X(x; \theta)$, then, under mild assumptions:
 - consistent: $\hat{\Theta}_n \rightarrow \theta$
 - asymptotically normal: $\frac{\hat{\Theta}_n - \theta}{\sigma(\hat{\Theta}_n)} \rightarrow N(0,1)$ (CDF convergence)
- analytical and simulation methods for calculating $\hat{\sigma} \approx \sigma(\hat{\Theta}_n)$
 - hence confidence intervals $P\left(\hat{\Theta}_n - 1.96\hat{\sigma} \leq \theta \leq \hat{\Theta}_n + 1.96\hat{\sigma}\right) \approx 0.95$
 - asymptotically "efficient" ("best")
ML estimation example: parameter of binomial

- K: binomial with parameters n (known), and θ (unknown)

$$p_{K}(k; \theta) = \binom{n}{k} \theta^k (1 - \theta)^{n-k}$$

$$\hat{\theta}_{ML} = \frac{k}{n}$$

$$\hat{\Theta}_{ML} = \frac{K}{n}$$

- same as MAP estimator with uniform prior on θ
ML estimation example — normal mean and variance

- X_1, \ldots, X_n: i.i.d., $N(\mu, \nu)$

$$f_X(x; \mu, \nu) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\nu}} \exp \left\{ -\frac{(x_i - \mu)^2}{2\nu} \right\}$$

minimize

$$\frac{n}{2} \log \nu + \sum_{i=1}^{n} \frac{(x_i - \mu)^2}{2\nu}$$

- minimize w.r.t. μ: $\hat{\mu} = \frac{x_1 + \cdots + x_n}{n}$

- minimize w.r.t. ν: $\hat{\nu} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$