LECTURE 23: More on the Poisson process

- The sum of independent Poisson r.v.s
- Merging and splitting
- Random incidence
The sum of independent Poisson random variables

- Poisson process of rate $\lambda = 1$

- Consecutive intervals of length μ and ν

- Numbers of arrivals during these intervals: M and N
 - M: Independent?
 - N: $M + N$:

The sum of independent Poisson random variables, with means/parameters μ and ν, is Poisson with mean/parameter $\mu + \nu$
Merging of independent Poisson processes

<table>
<thead>
<tr>
<th></th>
<th>$1 - \lambda_1 \delta$</th>
<th>$\lambda_1 \delta$</th>
<th>$O(\delta^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>≥ 2</td>
</tr>
<tr>
<td>$1 - \lambda_2 \delta$</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\lambda_2 \delta$</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$O(\delta^2)$</td>
<td>≥ 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram:
- Red bulb flashes (Poisson).
- Green bulb flashes (Poisson).

Merged process: \(\text{Poisson}(\lambda_1 + \lambda_2) \)
Where is an arrival of the merged process coming from?

\[P(\text{Red} \mid \text{arrival at time } t) = \]

\[
\begin{array}{c|ccc}
 & 1 - \lambda_1 \delta & \lambda_1 \delta & O(\delta^2) \\
\hline
1 - \lambda_2 \delta & 0 & 1 & \geq 2 \\
\lambda_2 \delta & 1 - (\lambda_1 + \lambda_2) \delta & \lambda_1 \delta & O(\delta^2) \\
O(\delta^2) & \geq 2 & & \\
\end{array}
\]

\[P(\text{kth arrival is Red}) = \]

- **Independence** for different arrivals

\[P(4 \text{ out of first 10 arrivals are Red}) = \]
The time the first (or the last) light bulb burns out

- Three lightbulbs
 - independent lifetimes X, Y, Z; exponential(λ)
- Find expected time until first burnout

- X, Y, Z: first arrivals in independent Poisson processes
- Merged process:
 - $\min\{X, Y, Z\}$: 1st arrival in merged process
The time the first (or the last) light bulb burns out

- Three lightbulbs
 - independent lifetimes X, Y, Z; exponential(λ)
- Find expected time until all burn out
Splitting of a Poisson process

- Split arrivals into two streams, using independent coin flips of a coin with bias q

 - assume that coin flips are independent from the original Poisson process

\[\cdots \quad \text{time} \]

\[\times \times \times \times \quad \cdots \quad \text{time} \]

\[\cdots \quad \text{time} \]

Resulting streams are Poisson, rates λq, $\lambda (1 - q)$

- Are the two resulting streams independent?

 Surprisingly, yes!
“Random incidence” in the Poisson process

- Poisson process that has been running forever

- Believe that $\lambda = 4$/hour, so that $E[T_k] =$

- Show up at some time and measure interarrival time
 - do it many times, average results, see something around 30 mins! Why?
“Random incidence” in the Poisson process — analysis

- Arrive at time \(t^* \)
- \(U \): last arrival time
- \(V \): next arrival time
- \(V - U = \)
- \(E[V - U] = \)
- \(V - U \): interarrival time you see, versus \(k \)th interarrival time
Random incidence “paradox” is not special to the Poisson process

- **Example:** interarrival times, i.i.d., equally likely to be 5 or 10 minutes

 expected value of kth interarrival time:

- you show up at a “random time”

 $P(\text{arrive during a 5-minute interarrival interval}) = $

 expected length of interarrival interval during which you arrive =

- Calculation generalizes to “renewal processes:”
 i.i.d. interarrival times, from some general distribution

- “Sampling method” matters
Different sampling methods can give different results

- Average family size?
 - look at a “random” family (uniformly chosen)
 - look at a “random” person’s (uniformly chosen) family

- Average bus occupancy?
 - look at a “random” bus (uniformly chosen)
 - look at a “random” passenger’s bus

- Average class size?
Resource: Introduction to Probability
John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.