i-theory:
visual cortex and deep networks

The Center for Brains, Minds and Machines

tomaso poggio,
CBMM, BCS, CSAIL, McGovern
MIT
Theoretical/conceptual framework for vision

- The first 100ms of vision: feedforward and invariant: what, who, where
- Top-down needed for verification step and more complex questions: generative models, probabilistic inference, top-down visual routines.

Following this conceptual framework we are working on:

1. *theory of invariance* in feedforward networks (visual cortex)
2. *a generative approach*, probabilistic in nature
3. *visual routines*, and of how they may be learned.
Object recognition

Figure removed due to copyright restrictions. Please see the video.

© Elsevier. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Vision: what is where

- **Human Brain**
 - 10^{10}-10^{11} neurons (~1 million flies)
 - 10^{14}-10^{15} synapses

- **Ventral stream in rhesus monkey**
 - ~10^9 neurons in the ventral stream
 (350 10^6 in each hemisphere)
 - ~$15\ 10^6$ neurons in AIT (Anterior InferoTemporal) cortex

- ~200M in V1, ~200M in V2, 50M in V4

Figure removed due to copyright restrictions. Please see the video. Source: Figure 2 from Felleman, Daniel J., and David C. Van Essen. "Distributed hierarchical processing in the primate cerebral cortex." Cerebral cortex 1, no. 1 (1991): 1-47.

• As a biological model of object recognition in the ventral stream -- from V1 to PFC -- it is perhaps the most quantitatively faithful to known neuroscience data

Hierarchical feedforward models of the ventral stream

Feedforward Models: “predict” rapid categorization (82% model vs. 80% humans)

Why do these networks including DLCNs work so well?

Models are not enough… we need a theory!
Plan

• i-theory (main results)

• equivalence to DCLNs, theory notes on DCLNs

• Some predictions + perspectives in i-theory

• Details and ML remarks
Learning of invariant & selective Representations in Sensory Cortex

© Source Unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

What i-theory can answer for you

- Why some hierarchical nets work well
- What is visual cortex computing?
- Function and circuits of simple-complex cells
- Why Gabor-like tuning in simple cells?
- Why generic, Gabor-like tuning in early areas and specific selective tuning higher up?
- What is the computational reason for the eccentricity-dependent size of RFs in V1, V2, V4?
- What are the roles of back projections?
A main computational goal of the feedforward ventral stream hierarchy — and of vision — is to compute a representation for each incoming image which is invariant to transformations previously experienced in the visual environment.
Empirical demonstration: invariant representation leads to lower sample complexity for a supervised classifier

Theorem (translation case)

Consider a space of images of dimensions $d \times d$ pixels which may appear in any position within a window of size $rd \times rd$ pixels. The usual image representation yields a sample complexity (of a linear classifier) of order $m = O(r^2d^2)$; the oracle representation (invariant) yields (because of much smaller covering numbers) a sample complexity of order

$$m_{\text{oracle}} = O(d^2) = \frac{m_{\text{image}}}{r^2}$$

An algorithm that learns in an unsupervised way to compute invariant representations

\[P(\nu) \]

\[\mu^k_n(I) = \frac{1}{|G|} \sum_{i=1}^{|G|} \sigma(I \cdot g_i t^k + n \Delta) \]
Invariant signature from a single image of a new object
We need only a finite number of projections, K, to distinguish among n images. Similar in spirit to Johnson-Lindestrauss

$$d(I, I') \text{ distance using all templates}$$

$$\hat{d}_K(I, I') \text{ distance using } K \text{ templates}$$

Suppose we have n images

$$\left\| d(I, I') - \hat{d}_K(I, I') \right\| \leq \epsilon \text{ with probability } 1 - \delta^2 \text{ if}$$

$$K \geq \frac{2}{c\varepsilon^2} \log\left(\frac{n}{\delta}\right)$$
I-Theory

So far: compact groups in R^2

I-theory extend proves invariance+uniqueness theorems for

- partially observable groups
- non-group transformations
- hierarchies of magic HW modules (multilayer)

Courtesy of NIPS. Used with permission.
Invariance, sparsity, wavelets

Theorem: Sparsity is *necessary and sufficient* condition for translation and scale invariance. Sparsity for translation (respectively scale) invariance is equivalent to the support of the template being small in space (respectively frequency).

Theorem: Maximum simultaneous invariance to translation and scale is achieved by Gabor templates:

\[
t(x) = e^{-\frac{x^2}{2\sigma^2}} e^{i\omega_0 x}
\]
Non-group transformations: approximate invariance in class-specific regime

$\mu_n^k(I)$ is locally invariant if:

- I is sparse in the dictionary of t^k
- I transforms in the same way (belong to the same class) as t^k
- the transformation is sufficiently smooth
Hierarchies of magic HW modules: key property is covariance

Courtesy of The Center for Brains, Minds and Machines, MIT.
Local and global invariance: whole-parts theorem

For any signal (image) there is a layer in the hierarchy such that the response is invariant w.r.t. the signal transformation.

biophysics: prediction on simple-complex cell
Basic machine: a HW module
(dot products and histograms/moments for image seen through RF)

- The cumulative histogram (empirical cdf) can be be computed as

\[
\mu^k_n(I) = \frac{1}{|G|} \sum_{i=1}^{|G|} \sigma(\langle I, g_i t^k \rangle + n\Delta)
\]

- This maps directly into a set of simple cells with threshold \(n\Delta \)

- \(\ldots \)and a complex cell indexed by \(n \) and \(k \) summatting the simple cells

The nonlinearity can be rather arbitrary for invariance provided it is stationary in time
Robust and bio plausible

- nonlinearity can be almost anything
- pooling is average but softmax is OK
- low bit precision
- Details and ML remarks
Dendrites of a complex cells as simple cells…

© Source Unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.