Acknowledgements

- Nicholas Arcolano
- Michelle Beard
- Nadya Bliss
- Josh Haines
- Matthew Schmidt
- Ben Miller
- Benjamin O’Gwynn
- Tamara Yu
- Bill Arcand
- Bill Bergeron

- David Bestor
- Chansup Byun
- Matt Hubbell
- Pete Michaleas
- Julie Mullen
- Andy Prout
- Albert Reuther
- Tony Rosa
- Charles Yee
- Dylan Hutchinson
Outline

- Introduction
- Course Outline
- Example Implementation
- Summary
Example Applications of Graph Analytics

ISR
- Graphs represent entities and relationships detected through multi-INT sources
- 1,000s – 1,000,000s tracks and locations
- GOAL: Identify anomalous patterns of life

Social
- Graphs represent relationships between individuals or documents
- 10,000s – 10,000,000s individual and interactions
- GOAL: Identify hidden social networks

Cyber
- Graphs represent communication patterns of computers on a network
- 1,000,000s – 1,000,000,000s network events
- GOAL: Detect cyber attacks or malicious software

- Cross-Mission Challenge: Detection of subtle patterns in massive multi-source noisy datasets
Example Applications of Graph Analytics

ISR
- Graphs represent entities and relationships detected through multi-INT sources
- 1,000s – 1,000,000s tracks and locations
- GOAL: Identify anomalous patterns of life

Social
- Graphs represent relationships between individuals or documents
- 10,000s – 10,000,000s individual and interactions
- GOAL: Identify hidden social networks

Cyber
- Graphs represent communication patterns of computers on a network
- 1,000,000s – 1,000,000,000s network events
- GOAL: Detect cyber attacks or malicious software

Cross-Mission Challenge: Detection of subtle patterns in massive multi-source noisy datasets
Example: Web Traffic Graph

Graph Statistics
- 90 minutes worth of traffic
- 1 frame = 1 minute of traffic
- Number of source computers: 4,063
- Number of web servers: 16,397
- Number of logs: 4,344,148

Malicious Activity Statistics
- Number of infected IPs: 1
- Number of event logs: 16,000
- % infected traffic: 0.37%
- Existing tools did not detect event
- Detection took 10 days and required manual log inspection

Challenge: Activity signature is typically a weak signal
Big Data Challenge: Data Representation

Data Sources

- Raw data sources are rarely stored in a graph format
- Data is often derived from multiple collection points

Graph Construction

- Many different graphs can be built from a single data source
- Constructing a single graph may require many sources
- Building multi-graphs requires that entities be normalized

Challenge: Raw data source representations do not enable the efficient construction of graphs of interest
Technology Stack

Graph Analytics

High Level Languages

Distributed Storage and Indexing

High Performance Processing

Applicability
 • Cyber, COIN, ISR, Bioinformatics

Resiliency
 • Uncertainty in data and observation

Scalability
 • Parallel language support

Programmability
 • Automated performance optimization

Portability
 • Bindings to multiple databases

Elasticity
 • Virtual machine development

Performance
 • Novel instruction set architectures

Efficiency
 • Specialized circuitry and communication
Outline

- Introduction
- Course Outline
- Example Implementation
- Summary
MIT is the #1 Science and Engineering University on Earth
A simple formula for success permeates all of MIT
Implementing this formula often reduces to software and bytes
Nearly all modern computers are Von Neumann architectures with multi-level memory hierarchies. The architecture selects the algorithms and data that run well on it.
Software Performance vs. Parallel Programmer Effort

- Goal: Software that does a lot with the least effort

Parallel Programming Models

- **DMA** = Direct Memory Access
- **MPI** = Message Passing
- **DA** = Distributed Arrays
- **MW** = Manager/Worker
- **MR** = Map/Reduce
- **D4M** = Dynamic Distributed Dimensional Data Model
Data volume and data request size determine best approach
Always want to start with the simplest and move to the most complex
• The class teaches the highest performance and lowest effort software techniques that are currently known.
Key Course Concepts

• Bigger definition of a graph
 – How to move beyond random, undirected, unweighted graphs to power-law, directed, multi-hyper graphs

• Bigger definition of linear algebra
 – How to move beyond real numbers to doing math with words and strings

• Bigger definition of processing
 – How to move beyond map/reduce to distributed arrays programming

• These abstract concepts are the foundation for high performance signal processing on large unstructured data sets
Course Outline

- Introduction
 - Review course goals and structure

- Using Associative Arrays
 - Schemas, incidence matrices, and directed multi-hyper graphs

- Group Theory
 - Extending linear algebra to words using fuzzy algebra

- Entity Analysis in Unstructured Data
 - Reading and parsing unstructured data

- Analysis of Structured Data
 - Graph traversal queries

- Power Law Data
 - Models and fitting

- Cross Correlation
 - Sequence data, computing degree distributions, and finding matches

- Parallel Processing
 - Kronecker graphs, parallel data generation and computation

- Databases
 - Relational, triple store, and exploded schemas
References

- Book: “Graph Algorithms in the Language of Linear Algebra”
- Editors: Kepner (MIT-LL) and Gilbert (UCSB)
- Contributors:
 - Bader (Ga Tech)
 - Bliss (MIT-LL)
 - Bond (MIT-LL)
 - Dunlavy (Sandia)
 - Faloutsos (CMU)
 - Fineman (CMU)
 - Gilbert (USCB)
 - Heitsch (Ga Tech)
 - Hendrickson (Sandia)
 - Kegelmeyer (Sandia)
 - Kepner (MIT-LL)
 - Kolda (Sandia)
 - Leskovec (CMU)
 - Madduri (Ga Tech)
 - Mohindra (MIT-LL)
 - Nguyen (MIT)
 - Radar (MIT-LL)
 - Reinhardt (Microsoft)
 - Robinson (MIT-LL)
 - Shah (USCB)
Outline

• Introduction
• Course Outline
• Example Implementation
• Summary
Constructing Graph Representations of Raw Data Source

1. Parse edge and vertex information from raw data
 - Developed Once Per Data Source Per Graph

2. Convert edge lists into adjacency matrices
 - Developed Once

- Raw data sources can contain information about multiple types of relations between entities
- The process of constructing a graph representation is specific to both the data source and the relationships represented by the graph

- The development time of parsing and graph construction algorithms can overwhelm the runtime of the algorithm
Graph Construction Using D4M

1. Parse fields from raw data
 (Developed Once Per Data Source)

2. Explode schema and store in database
 (D4M)

3. Construct associative arrays using D4M queries
 (Developed Once Per Graph)

4. Convert associative arrays into adjacency matrices
 (D4M)

- D4M provides needed flexibility in the construction of large-scale, dynamic graphs at different resolutions and scopes
Graph Construction Using D4M: Parsing Raw Data Into Dense Tables

Proxy Logs

```
128.0.0.1 208.29.69.138 "-" [10/May/2011:09:52:53] "GET http://www.thedailybeast.com/ HTTP/1.1" 200
1024 8192 "http://www.theatlantic.com/" "Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.9.2.13)
Gecko/20101209 CentOS/3.6-2.el5.centos Firefox/3.6.13" "bl" - "text/html" "MITLAB" 0.523 "-"
Neutral TCP_MISS
10296 "-" "Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.9.2.13) Gecko/20101209 CentOS/3.6-2.el5.centos Firefox/3.6.13" "bu" - "text/html" "MITLAB" 0.784 "-" Neutral TCP_MISS
...```

**Dense Table**

```
<table>
<thead>
<tr>
<th>log_id</th>
<th>src_ip</th>
<th>server_ip</th>
<th>time_stamp</th>
<th>req_line</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>128.0.0.1</td>
<td>208.29.69.138</td>
<td>10/May/2011:09:52:53</td>
<td>GET http://www.thedailybeast.com/ HTTP/1.1</td>
</tr>
<tr>
<td>003</td>
<td>128.0.0.1</td>
<td>74.125.224.72</td>
<td>13/May/2011:11:05:12</td>
<td>GET http://www.google.com/ HTTP/1.1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
```
Graph Construction Using D4M: Explode Schema

Raw Data → CSV Files → Distributed Database → Assoc. Arrays

Dense Table

<table>
<thead>
<tr>
<th>log_id</th>
<th>src_ip</th>
<th>server_ip</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>128.0.0.1</td>
<td>208.29.69.138</td>
</tr>
<tr>
<td>002</td>
<td>192.168.1.2</td>
<td>157.166.255.18</td>
</tr>
<tr>
<td>003</td>
<td>128.0.0.1</td>
<td>74.125.224.72</td>
</tr>
</tbody>
</table>

Exploded Table

<table>
<thead>
<tr>
<th>src_ip</th>
<th>128.0.0.1</th>
<th>src_ip</th>
<th>192.168.1.2</th>
<th>server_ip</th>
<th>157.166.255.18</th>
<th>server_ip</th>
<th>208.29.69.138</th>
<th>server_ip</th>
<th>74.125.224.72</th>
</tr>
</thead>
<tbody>
<tr>
<td>log_id</td>
<td>001</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>log_id</td>
<td>002</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>log_id</td>
<td>003</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Graph Construction Using D4M: Storing Exploded Data as Triples

Exploded Table

<table>
<thead>
<tr>
<th>Row</th>
<th>Column</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>log_id</td>
<td>001</td>
<td>src_ip</td>
</tr>
<tr>
<td>log_id</td>
<td>001</td>
<td>server_ip</td>
</tr>
<tr>
<td>log_id</td>
<td>002</td>
<td>src_ip</td>
</tr>
<tr>
<td>log_id</td>
<td>002</td>
<td>server_ip</td>
</tr>
<tr>
<td>log_id</td>
<td>003</td>
<td>src_ip</td>
</tr>
<tr>
<td>log_id</td>
<td>003</td>
<td>server_ip</td>
</tr>
</tbody>
</table>

D4M stores the triple data representing both the exploded table and its transpose

Table Triples

<table>
<thead>
<tr>
<th>Row</th>
<th>Column</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>log_id</td>
<td>001</td>
<td>src_ip</td>
</tr>
<tr>
<td>log_id</td>
<td>001</td>
<td>server_ip</td>
</tr>
<tr>
<td>log_id</td>
<td>002</td>
<td>src_ip</td>
</tr>
<tr>
<td>log_id</td>
<td>002</td>
<td>server_ip</td>
</tr>
<tr>
<td>log_id</td>
<td>003</td>
<td>src_ip</td>
</tr>
<tr>
<td>log_id</td>
<td>003</td>
<td>server_ip</td>
</tr>
</tbody>
</table>

Table Transpose Triples

<table>
<thead>
<tr>
<th>Row</th>
<th>Column</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>server_ip</td>
<td>157.166.255.18</td>
<td>log_id</td>
</tr>
<tr>
<td>server_ip</td>
<td>208.29.69.138</td>
<td>log_id</td>
</tr>
<tr>
<td>server_ip</td>
<td>74.125.224.72</td>
<td>log_id</td>
</tr>
<tr>
<td>src_ip</td>
<td>128.0.0.1</td>
<td>log_id</td>
</tr>
<tr>
<td>src_ip</td>
<td>128.0.0.1</td>
<td>log_id</td>
</tr>
<tr>
<td>src_ip</td>
<td>192.168.1.2</td>
<td>log_id</td>
</tr>
</tbody>
</table>
Graph Construction Using D4M: Construct Associative Arrays

D4M Query #1

```
keys = T(:, 'time_stamp|10/May/2011:00:00:00', :, ...
 'time_stamp|13/May/2011:23:59:59',);
```

```
('log_id|001', 'time_stamp|11/May/2011:09:52:53', 1)
('log_id|003', 'time_stamp|13/May/2011:11:05:12', 1)
...
Graph Construction Using D4M: Construct Associative Arrays

D4M Query #1
\[\text{keys} = \text{T}(,:), 'time_stamp|10/May/2011:00:00:00', :, \ldots 'time_stamp|13/May/2011:23:59:59',); \]

D4M Query #2
\[\text{data} = \text{T(Row(keys), :);} \]

(`log_id|001`, `server_ip|208.29.69.138`, 1)
(`log_id|001`, `src_ip|128.0.0.1`, 1)
(`log_id|001`, `time_stamp|11/May/2011:09:52:53`, 1)
\ldots
(`log_id|002`, `server_ip|157.166.255.18`, 1)
(`log_id|002`, `src_ip|192.168.1.2`, 1)
(`log_id|002`, `time_stamp|12/May/2011:13:24:11`, 1)
\ldots
(`log_id|003`, `server_ip|74.125.224.72`, 1)
(`log_id|003`, `src_ip|128.0.0.1`, 1)
(`log_id|003`, `time_stamp|13/May/2011:11:05:12`, 1)
\ldots
Graph Construction Using D4M: Construct Associative Arrays

D4M Query #1
\[
\text{keys} = T(:,\text{'time_stamp'|10/May/2011:00:00:00',:, ...}
\text{'time_stamp'|13/May/2011:23:59:59',});
\]

D4M Query #2
\[
\text{data} = T(\text{Row(keys)}, :);
\]

Associative Array Algebra
\[
G = \text{data}(:,\text{'src_ip'|*'}).' \ast \text{data}(:,\text{'server_ip'|*'});
\]

\[
\begin{align*}
\text{('src_ip|128.0.0.1', 'server_ip|208.29.69.138', 1)} \\
\text{('src_ip|128.0.0.1', 'server_ip|74.125.224.72', 1)} \\
\text{('src_ip|192.168.1.2', 'server_ip|157.166.255.18', 1)} \\
\text{...}
\end{align*}
\]
Graph Construction Using D4M: Construct Associative Arrays

D4M Query #1
\[
\text{keys} = T(:,\text{'time_stamp'|10/May/2011:00:00:00',:, \ldots 'time_stamp'|13/May/2011:23:59:59',});
\]

D4M Query #2
\[
\text{data} = T(\text{Row(keys)}, :);
\]

Associative Array Algebra
\[
G = \text{data}(::\text{'src_ip'|*').} \ast \text{data}(::\text{'server_ip'|*');}
\]

- Graphs can be constructed with minimal effort using D4M queries and associative array algebra
Constructing Graph Representation of One Week’s Worth of Proxy Data

- Ingested ~130 million proxy log records resulting in ~4.5 billion triples
- Constructed 604,800 secondwise source IP to server IP graphs
- Constructing graphs with different vertex types could be done without re-parsing or re-ingesting data

- Utilizing D4M could allow analysis to be run in nearly real-time (dependent on raw data availability)
Summary

• Big data is found across a wide range of areas
 – Document analysis
 – Computer network analysis
 – DNA Sequencing

• Currently there is a gap in big data analysis tools for algorithm developers

• D4M fills this gap by providing algorithm developers composable associative arrays that admit linear algebraic manipulation
Example Code and Assignment

- Example code
 - D4Muser_share/Examples/1Intro/1AssocIntro

- Assignment
 - Test your LLGrid account and D4M
 - Copy the D4Muser_share/Examples to your LL Grid home directory
 - Verify that you can run the above examples
 - Start Matlab
 - CD to your copy of the example
 - Run the Examples