Research Data Management: Strategies for Data Sharing and Storage
Research Data Management Services @ MIT Libraries

• Workshops

• Web guide: http://libraries.mit.edu/data-management

• Individual assistance/consultations
 – includes assistance with creating data management plans
Why Share and Archive Your Data?

- Funder requirements
- Publication requirements
- Research credit
- Reproducibility, transparency, and credibility
- Increasing collaborations, enabling future discoveries
Research Data: Common Types by Discipline

<table>
<thead>
<tr>
<th>General</th>
<th>Social Sciences</th>
<th>Hard Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>images</td>
<td>survey responses</td>
<td>measurements generated by sensors/laboratory instruments</td>
</tr>
<tr>
<td>video</td>
<td>focus group and individual interviews</td>
<td>computer modeling</td>
</tr>
<tr>
<td>mapping/GIS data</td>
<td>economic indicators</td>
<td>simulations</td>
</tr>
<tr>
<td>numerical measurements</td>
<td>demographics</td>
<td>observations and/or field studies</td>
</tr>
<tr>
<td></td>
<td>opinion polling</td>
<td>specimen</td>
</tr>
</tbody>
</table>
Digital data + Complex workflows
Research Data: Stages

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Data</td>
<td>raw txt file produced by an instrument</td>
</tr>
<tr>
<td>Processed Data</td>
<td>data with Z-scores calculated</td>
</tr>
<tr>
<td>Analyzed Data</td>
<td>rendered computational analysis</td>
</tr>
<tr>
<td>Finalized/Published Data</td>
<td>polished figures appear in Cell</td>
</tr>
</tbody>
</table>
Setting Up for Reuse:

- Formats
- Versioning
- Metadata
In the best case, your data formats are both:
• Non-proprietary (also known as open), and
• Unencrypted and uncompressed
In the best case, your data files are both:

- **Non-proprietary (also known as open)**, and
- Unencrypted and uncompressed
Formats: Preferred Examples

<table>
<thead>
<tr>
<th>Proprietary Format</th>
<th>Alternative/Preferred Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excel (.xls, .xlsx)</td>
<td>Comma Separated Values (.csv) ASCII</td>
</tr>
<tr>
<td>Word (.doc, .docx)</td>
<td>plain text (.txt), or if formatting is needed, PDF/A (.pdf)</td>
</tr>
<tr>
<td>PowerPoint (.ppt, .pptx)</td>
<td>PDF/A (.pdf)</td>
</tr>
<tr>
<td>Photoshop (.psd)</td>
<td>TIFF (.tif, .tiff)</td>
</tr>
<tr>
<td>Quicktime (.mov)</td>
<td>MPEG-4 (.mp4)</td>
</tr>
</tbody>
</table>
In the best case, your data files are both:
• Non-proprietary (also known as *open*), and
• Unencrypted and uncompressed
Formats: Preferred Examples

<table>
<thead>
<tr>
<th>Type of Data</th>
<th>Preferred Formats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text</td>
<td>TXT, XML, PDF/A, HTML, ASCII, UTF-8</td>
</tr>
<tr>
<td>Still images</td>
<td>TIFF, JPEG 2000, PDF, PNG</td>
</tr>
<tr>
<td>Moving images</td>
<td>MOV, MPEG, AVI, MXF</td>
</tr>
<tr>
<td>Sounds</td>
<td>WAVE, AIFF</td>
</tr>
<tr>
<td>Statistics</td>
<td>ASCII</td>
</tr>
<tr>
<td>Databases</td>
<td>XML, CSV</td>
</tr>
<tr>
<td>Containers</td>
<td>TAR, GZIP, ZIP</td>
</tr>
</tbody>
</table>
Information can be lost when converting file formats.

To mitigate the risk of lost information when converting:

– Note the conversion steps you take
– If possible, keep the original file as well as the converted ones
Setting Up for Reuse:

- Formats
- Versioning
- Metadata
Versioning: Why do I need to worry about that?

➢ Have you ever had to leave the lab for a few days and have someone else pick up your project?
➢ Or picked up someone else’s project?
➢ Will you leave your lab before a project is complete?
➢ Have you ever had to revisit a project after a break (to publish or pick it up again)?
Versioning: Basic Practices

Keep the original version of the data file the same and save iterative versions of the analysis/program/scripts files
Versioning: Basic Practices

In some cases, it may make sense to log the changes so that you can quickly assess and access the versions.

It’s good to document:
• What was changed?
• Who is responsible?
• When did it happen?
• Why?
Versioning: File Naming Conventions

Naming conventions make life easier!

Naming conventions should be:

- **Descriptive**
- **Consistent**

Consider including:

- Unique identifier (i.e. Project Name or Grant # in folder name)
- Project or research data name
- Conditions (Lab instrument, Solvent, Temperature, etc.)
- Run of experiment (sequential)
- Date (in file properties too)
- Version #
Versioning: File Naming Conventions

Naming conventions make life easier!

Naming conventions should be:

- Descriptive
- Consistent

YYYYMMDD
MMDDYYYY
YYMMDD
MMDDYY
MMDD
DDMM

TimeDate
DateProjectID
TimeProjectID
Sample001234
Sample01234
Sample1234

Include the same information

Maintain order
Versioning: File Naming Conventions

<table>
<thead>
<tr>
<th>Best Practice</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit the file name to 32 characters (preferably less!)</td>
<td>32CharactersLooksExactlyLikeThis.csv</td>
</tr>
<tr>
<td>When using sequential numbering, use leading zeros to allow for multi-digit versions</td>
<td></td>
</tr>
<tr>
<td>For a sequence of 1-10: 01-10</td>
<td>NO ProjID_1.csv ProjID_12.csv</td>
</tr>
<tr>
<td>For a sequence of 1-100: 001-010-100</td>
<td>YES ProjID_01.csv ProjID_12.csv</td>
</tr>
<tr>
<td>Don’t use special characters & , * % # ; * ()! @$ ^ ~ ' { } [] ? < > -</td>
<td>NO name&date@location.doc</td>
</tr>
<tr>
<td>Use only one period and use it before the file extension</td>
<td>NO name.date.doc NO name_date..doc</td>
</tr>
<tr>
<td></td>
<td>YES name_date.doc YES name_date.doc</td>
</tr>
<tr>
<td>Avoid using generic data file names that may conflict when moved from one location to another</td>
<td>NO MyData.csv YES ProjID_date.csv</td>
</tr>
</tbody>
</table>
Versioning: File Naming Conventions

Resources:

• Check for Established File Naming Conventions in your discipline
 DOE's Atmospheric Radiation Measurement (ARM) program
 GIS datasets from Massachusetts
 The Open Biological and Biomedical Ontologies

• File Renaming Tools
 Bulk Rename Utility
 Renamer
 PSRenamer
 WildRename
Setting Up for Reuse:

- Formats
- Versioning
- Metadata
Metadata should tell you…

• **What** do the data consist of?
• **Why** were the data created?
• What **limitations**, if any, do the data have?
• What does the data **mean**?
• How should the data be **cited**?
Metadata fields

- Title
- Creator
- Identifier
- Funders
- Dates
- Rights
- Processing
- Location

- Instruments used
 - Standards/calibrations used, environmental conditions
 - Units of measure
 - Formats used in the data set
 - Precision/accuracy
 - Software, data processing
 - Date last modified
 - …
Metadata: Things to Document

- Title: datasetName
- Creator: Malinowski, Christine
- Identifier: dataID
- Funders: NIH
- Dates: 20140123-20150114
- Rights: We own this data.
- Processing: Normalized
- Location: This file is located in this directory MyProject_NSF_2014
Metadata Standards

- Provide common terms, definitions, structures.
- Ensure you have a complete, standard set of information
- Enable your dataset to be organized with other datasets

Examples:
- DDI (Data Documentation Initiative)
- Dublin Core
- FGDC (Federal Geographic Data Committee)
Capturing Metadata

- In a readme file
- In a spreadsheet
- In an XML file
- Into a database (when I share the data)
Document your workflow

- Workflow: how you get from raw data to the final product of research
- Documentation could be a flowchart or document
- Comment your code and scripts
- Well-commented code is easier
 - to review
 - share
 - and use for repeat analysis
Time types

Time in the database is stored with one of two suffixes: **TIME** and **DATE**. If a column has **TIME** as the suffix, e.g. **CHARTTIME**, then the data resolution is down to the minute. If the column has **DATE** as the suffix, e.g. **CHARTDATE**, then the data resolution is down to the day. That means that measurements in a **CHARTDATE** column will always have 00:00:00 has the hour, minute, and second values. This does not mean it was recorded at midnight: it indicates that we do not have the exact time, only the date.

Date shifting

All dates in the database have been shifted to protect patient confidentiality. Dates will be internally consistent for the same patient, but randomly distributed in the future. Dates of birth which occur in the present time are not true dates of birth. Furthermore, dates of birth which occur before the year 1900 occur if the patient is older than 89. In these
Metadata: Best Practices

- Consistent data entry is important
 - Avoid extraneous punctuation & most abbreviations
 - Use templates, macros & existing standards when possible
 - Keep a data dictionary
- Extract pre-existing metadata
- Document production and analysis steps
- Consult a metadata librarian!
Setting Up for Sharing:
- Publishing
- Copyright / Licensing
- Citations
- Persistent IDs
- Private / Confidential data
Data Sharing: Options

- Individual request
- Personal website
- Publish as supplementary material
- Deposit in a repository
- Publish a data paper
Data Sharing: Publication

On your own:

● **Pros:**
 - Little up-front work
 - Allows for careful control of private/confidential data

● **Cons:**
 - Hard to find and/or access
 - Ongoing management burden
 - High risk for data loss
Data Sharing: Publication

Data as Supplementary Material:

● Pros:
 o Associates data with published articles
 o Provides a citable source

● Cons:
 o Limits to number and sizes of files
 o Possible format limitations
 o Reduced metadata
Data repositories:

● Pros:
 o Allows addition of metadata to provide context
 o Subject-specific repositories collocate related data sets
 o Often provide archiving/long-term preservation services

● Cons:
 o Up-front work to submit data
 o Limitations on what can be submitted

More on repositories later...
Data Sharing: Publication

Data journals:
- Publish “data papers”
- Help make data sets discoverable and citable
- Peer-reviewed
Data Sharing: Publication

Data journal examples:

- **Scientific Data** http://www.nature.com/sdata/about
- **Journal of Chemical and Engineering Data** http://pubs.acs.org/journal/jceaax
- **Open Health Data** http://openhealthdata.metajnl.com/
- And more...
Data Sharing: Copyright / Licensing

<table>
<thead>
<tr>
<th>Type of Information</th>
<th>Copyrightable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw data</td>
<td>No</td>
</tr>
<tr>
<td>Processed/cleaned data</td>
<td>No</td>
</tr>
<tr>
<td>Data in a creative visual representation (chart, graph)</td>
<td>Yes</td>
</tr>
<tr>
<td>Database</td>
<td>Maybe</td>
</tr>
</tbody>
</table>
Data Sharing: Citation

• Facilitates discovery of data
• Gives credit to the researcher
• Recognizes data as substantial output of the research process
• Allows for citation/impact analysis, as with article publications
Data Sharing: Citation

Important components:
- Creator/author
- Title
- Publisher
- Publication date
- Version
- Persistent ID
Persistent identifier:

“A unique web-compatible alphanumerical code that points to a resource (e.g., data set) that will be preserved for the long term (i.e., over several hardware and software generations).”\(^2\)

Data Sharing: Persistent IDs

- DOI - Digital Object Identifier
- ARK - Archival Resource Key
- Researcher identifier
 - ORCID - Open Researcher and Contributor ID
Data Sharing: Persistent IDs

● ORCID - Open Researcher and Contributor ID
 o Registry of researchers with unique identifiers
 o Name disambiguation helps with attribution
 o Supported by many publishers and repositories
 o Free to register at http://orcid.org/
Data Sharing: Citation

● Cite others’ data properly

● Ensure that your data has sufficient information to be cited properly:
 o Creator, title, publisher, publication year, version
 o Persistent ID
Data Sharing: Managing Private / Confidential Data

Things to consider:

● de-identification / anonymization
● segregation of sensitive information
● adherence to relevant laws & policies

http://informatics.mit.edu/classes/managing-confidential-data
Long-term Storage:

- Definition
- Active Management
- Management Strategies
- Repositories
Long-term Storage

- What does “long-term” mean?
 - Two years?
 - Ten years?
 - Fifty years?
Long-term Storage

- Preservation = active management
 - Backup
 - Fixity checks
 - Format migration
 - Security/permissioning
Long-term Storage

- Backup
 - Multiple types of storage (spinning disk, tape, cloud servers)
 - Distributed across geographic locations
 - At least three copies
Long-term Storage

● Fixity checking
 o Generate and store checksums / cryptographic hash values for all files
 o MD5 and SHA-1 are common
 o Verify checksums regularly
Long-term Storage

- Format Migration
 - Obsolescence due to evolution of software
 - Reiterate: open, uncompressed formats!
 - Requires monitoring of formats over time
Long-term Storage

- Security
 - Physical space - access to storage hardware
 - Virtual space - permission controls
 - Access to read/use vs.
 - Write/edit
Long-term Storage

Management strategies

- Institutional resources
 - Backup services
 - Storage
- Grant/project funding
- Repositories: a great solution for many challenges!
Long-term Storage

Discipline-specific repositories

- Inter-university Consortium for Political and Social Research (ICPSR)
 http://www.icpsr.umich.edu
- Dryad - Scientific and medical data
 http://datadryad.org/
Find a repository:

- Registry of Research Data Repositories (re3data) http://www.re3data.org/

Repositories: What to look for

- Open access
- Generates persistent IDs
- Good archival practices (Trusted Digital Repository certification)
- Flexible metadata
- Additional services (data cleanup, format migration/normalization, metadata assistance, etc.)