

A062841


Palindromes of the form k^31.


0



0, 7, 999, 999999, 258474852, 999999999, 999999999999, 999999999999999, 999999999999999999, 999999999999999999999, 999999999999999999999999, 999999999999999999999999999, 999999999999999999999999999999, 999999999999999999999999999999999
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Sequence is infinite as (10^k)^31 is a term for all k >= 0.  Michael S. Branicky, Mar 27 2021


LINKS

Table of n, a(n) for n=1..14.


EXAMPLE

999 = 10^31 and is a palindrome.


MATHEMATICA

For[n=0, n<100000000, n++, If[n^31==IntegerReverse[n^31], Print[n^31]]] (* Dylan Delgado, Mar 02 2021 *)


PROG

(Python)
def afind(limit):
for n in range(limit+1):
s = str(n**3  1)
if s == s[::1]: print(int(s), end=", ")
print(afind(10**7)) # Michael S. Branicky, Mar 27 2021


CROSSREFS

Intersection of A002113 and A068601.
Sequence in context: A332197 A213960 A173852 * A349736 A110718 A293142
Adjacent sequences: A062838 A062839 A062840 * A062842 A062843 A062844


KEYWORD

base,nonn,more


AUTHOR

Erich Friedman, Jul 21 2001


EXTENSIONS

One more term from Emeric Deutsch, Feb 26 2005
a(10)a(14) from Michael S. Branicky, Mar 27 2021


STATUS

approved



