MIT OpenCourseWare: New Courses in Mechanical EngineeringNew courses in Mechanical Engineering from MIT OpenCourseWare, provider of free and open MIT course materials.
https://ocw.mit.edu/courses/mechanical-engineering
2016-11-23T12:15:18+05:00MIT OpenCourseWare https://ocw.mit.eduen-USContent within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm2.051 Introduction to Heat Transfer (MIT)This course is an introduction to the principal concepts and methods of heat transfer. The objectives of this integrated subject are to develop the fundamental principles and laws of heat transfer and to explore the implications of these principles for system behavior; to formulate the models necessary to study, analyze and design heat transfer systems through the application of these principles; to develop the problem-solving skills essential to good engineering practice of heat transfer in real-world applications.
https://ocw.mit.edu/courses/mechanical-engineering/2-051-introduction-to-heat-transfer-fall-2015
Fall2015Varanasi, Kripa2016-06-06T15:03:03+05:002.051en-USConductionConvectionRadiationFourier LawEnergy BalanceFirst law of thermodynamicsThermal resistance networkThermal Energy GenerationFinsHeat Transfer in FinsMIT OpenCourseWare https://ocw.mit.eduContent within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm2.29 Numerical Fluid Mechanics (MIT)This course is an introduction to numerical methods and MATLAB®: Errors, condition numbers and roots of equations. Topics covered include Navier-Stokes; direct and iterative methods for linear systems; finite differences for elliptic, parabolic and hyperbolic equations; Fourier decomposition, error analysis and stability; high-order and compact finite-differences; finite volume methods; time marching methods; Navier-Stokes solvers; grid generation; finite volumes on complex geometries; finite element methods; spectral methods; boundary element and panel methods; turbulent flows; boundary layers; and Lagrangian coherent structures (LCSs).Prof. Pierre Lermusiaux is very grateful to the teaching assistants Dr. Matt Ueckermann, Dr. Tapovan Lolla, Mr. Jing Lin, and Mr. Arpit Agarwal for their contributions to the course over the years.
https://ocw.mit.edu/courses/mechanical-engineering/2-29-numerical-fluid-mechanics-spring-2015
Spring2015Lermusiaux, Pierre2015-12-15T17:26:29+05:002.29en-USerrorscondition numbers and roots of equationsNavier-Stokesdirect and iterative methods for linear systemsfinite differences for ellipticparabolic and hyperbolic equationsFourier decompositionerror analysisand stabilityhigh-order and compact finite-differencesfinite volume methodstime marching methodsNavier-Stokes solversgrid generationfinite volumes on complex geometriesfinite element methodsspectral methodsboundary element and panel methodsturbulent flowsboundary layersLagrangian Coherent StructuresMIT OpenCourseWare https://ocw.mit.eduContent within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm2.18 Biomolecular Feedback Systems (MIT)This course focuses on feedback control mechanisms that living organisms implement at the molecular level to execute their functions, with emphasis on techniques to design novel systems with prescribed behaviors. Students will learn how biological functions can be understood and designed using notions from feedback control.
https://ocw.mit.edu/courses/mechanical-engineering/2-18-biomolecular-feedback-systems-spring-2015
Spring2015Del Vecchio, Domitilla2015-11-04T04:57:51+05:002.182.180en-USbiomolecular feedback systemssystems biologymodelingfeedbackcellsystemcontroldynamicalinput/outputsynthetic biologytechniquestranscriptiontranslationtranscriptional regulationpost-transcriptional regulationcellular subsystemsdynamic behavioranalysisequilibriumrobustnessoscillatory behaviorbifurcationsmodel reductionstochasticbiochemicalsimulationlinearcircuitdesignbiological circuit designnegative autoregulationtoggle switchrepressilatoractivator-repressor clockIFFLincoherent feedforward loopbacterial chemotaxisinterconnecting componentsmodularityretroactivitygene circuitdesignMIT OpenCourseWare https://ocw.mit.eduContent within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm2.086 Numerical Computation for Mechanical Engineers (MIT)This class introduces elementary programming concepts including variable types, data structures, and flow control. After an introduction to linear algebra and probability, it covers numerical methods relevant to mechanical engineering, including approximation (interpolation, least squares and statistical regression), integration, solution of linear and nonlinear equations, ordinary differential equations, and deterministic and probabilistic approaches. Examples are drawn from mechanical engineering disciplines, in particular from robotics, dynamics, and structural analysis. Assignments require MATLAB® programming.
https://ocw.mit.edu/courses/mechanical-engineering/2-086-numerical-computation-for-mechanical-engineers-fall-2014
Fall2014Hadjiconstantinou, Nicolas G.Patera, Anthony T.2015-07-09T11:38:51+05:002.086en-USMATLABnumerical analysisprogrammingphysical modelingcalculuslinear algebraMonte Carlo Methoddifferential equationsnonlinear systemsvariable typesdata structureflow controlprobabilitystatisticsroboticsMIT OpenCourseWare https://ocw.mit.eduContent within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm2.25 Advanced Fluid Mechanics (MIT)This course is a survey of principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua; Navier-Stokes equation for viscous flows; similarity and dimensional analysis; lubrication theory; boundary layers and separation; circulation and vorticity theorems; potential flow; introduction to turbulence; lift and drag; surface tension and surface tension driven flows.
https://ocw.mit.edu/courses/mechanical-engineering/2-25-advanced-fluid-mechanics-fall-2013
Fall2013McKinley, Gareth2015-06-30T17:00:17+05:002.25en-USfluid dynamicsMass conservationNavier-Stokes equationviscous flowsdimensional analysisLubrication theoryboundary layerliftdragvorticity theoremsPotential flowturbulenceBernoulli equationpotenial flowinviscid flowflightsurface tensionMIT OpenCourseWare https://ocw.mit.eduContent within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm2.785J Cell-Matrix Mechanics (MIT)Mechanical forces play a decisive role during development of tissues and organs, during remodeling following injury as well as in normal function. A stress field influences cell function primarily through deformation of the extracellular matrix to which cells are attached. Deformed cells express different biosynthetic activity relative to undeformed cells. The unit cell process paradigm combined with topics in connective tissue mechanics form the basis for discussions of several topics from cell biology, physiology, and medicine.
https://ocw.mit.edu/courses/mechanical-engineering/2-785j-cell-matrix-mechanics-fall-2014
Fall2014Spector, MyronYannas, Ioannis2015-05-04T13:51:28+05:002.785J3.97J20.411JHST.523Jen-US2.785J2.7853.97J3.9720.411J20.411HST.523JHST.523cellmatrixmechanicstissueorgandevelopmentinjurystress fieldcell functiondeformed cellsbiosynthetic activityunit cellconnective tissuecell biologyphysiologymedicinecytoplasmextracellular matrixskeletonboneMIT OpenCourseWare https://ocw.mit.eduContent within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm2.700 Principles of Naval Architecture (MIT)This course presents principles of naval architecture, ship geometry, hydrostatics, calculation and drawing of curves of form, intact and damage stability, hull structure strength calculations and ship resistance. It introduces computer-aided naval ship design and analysis tools. Projects include analysis of ship lines drawings, calculation of ship hydrostatic characteristics, analysis of intact and damaged stability, ship model testing, and hull structure strength calculations.
https://ocw.mit.edu/courses/mechanical-engineering/2-700-principles-of-naval-architecture-fall-2014
Fall2014Harbour, JoelSapsis, Themistoklis2015-04-13T12:19:24+05:002.7002.701en-USnaval architectureship geometrygeometry of shipsship resistanceflowhydrostaticsintact stabilitydamage stabilitygeneral stabilityhullhydrostaticship model testinghull structureResistancePropulsionVibrationsubmarinehull subdivisionmidsectionMIT OpenCourseWare https://ocw.mit.eduContent within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm2.737 Mechatronics (MIT)This course is an introduction to designing mechatronic systems, which require integration of the mechanical and electrical engineering disciplines within a unified framework. There are significant laboratory-based design experiences. Topics covered in the course include: Low-level interfacing of software with hardware; use of high-level graphical programming tools to implement real-time computation tasks; digital logic; analog interfacing and power amplifiers; measurement and sensing; electromagnetic and optical transducers; control of mechatronic systems.
https://ocw.mit.edu/courses/mechanical-engineering/2-737-mechatronics-fall-2014
Fall2014Trumper, David2015-03-26T17:15:13+05:002.737en-USmechatronicsmechatronic systemscontrol systemselectrical systemsmechanical systemsrobotsroboticsLabVIEWcontrol electronicselectromechanicsmechanical CADdigital control systemslaboratorydesignsoftwarehardwarecomputationdigital logicanalog interfacingpower amplifiermeasurementsensingtransducerMIT OpenCourseWare https://ocw.mit.eduContent within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm2.71 Optics (MIT)This course provides an introduction to optical science with elementary engineering applications. Topics covered in geometrical optics include: ray-tracing, aberrations, lens design, apertures and stops, radiometry and photometry. Topics covered in wave optics include: basic electrodynamics, polarization, interference, wave-guiding, Fresnel and Fraunhofer diffraction, image formation, resolution, space-bandwidth product. Analytical and numerical tools used in optical design are emphasized. Graduate students are required to complete assignments with stronger analytical content, and an advanced design project.
https://ocw.mit.edu/courses/mechanical-engineering/2-71-optics-spring-2014
Spring2014Fang, Nicholas X.2015-01-22T13:49:57+05:002.712.710en-USopticsoptical sciencegeometrical opticsray-tracingaberrationslens designaperturesstopsradiometryphotometryWave opticselectrodynamicspolarizationinterferencewave-guidingFresnelFraunhofer diffractionimage formationresolutionspace-bandwidth productoptical designMIT OpenCourseWare https://ocw.mit.eduContent within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm2.080J Structural Mechanics (MIT)This course covers the fundamental concepts of structural mechanics with applications to marine, civil, and mechanical structures. Topics include analysis of small deflections of beams, moderately large deflections of beams, columns, cables, and shafts; elastic and plastic buckling of columns, thin walled sections and plates; exact and approximate methods; energy methods; principle of virtual work; introduction to failure analysis of structures. We will include examples from civil, mechanical, offshore, and ship structures such as the collision and grounding of ships.
https://ocw.mit.edu/courses/mechanical-engineering/2-080j-structural-mechanics-fall-2013
Fall2013Wierzbicki, Tomasz2015-01-17T20:52:39+05:002.080J1.573Jen-USvectortensorstatic equilibriumstrainstressMohr's circleelasticvirtual workminimum total potential energybeam deflectionsenergy methodshear stressbeamshaftexperimental mechanicsstabilityRayleigh-Ritz quotientcolumnbucklingloadplateyieldplasticitycylinderfractureimplosionsubmarineColumbia Space ShuttleBPDeepwater HorizoncrashworthinessMIT OpenCourseWare https://ocw.mit.eduContent within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm2.087 Engineering Math: Differential Equations and Linear Algebra (MIT)This course is about the mathematics that is most widely used in the mechanical engineering core subjects: An introduction to linear algebra and ordinary differential equations (ODEs), including general numerical approaches to solving systems of equations.
https://ocw.mit.edu/courses/mechanical-engineering/2-087-engineering-math-differential-equations-and-linear-algebra-fall-2014
Fall2014Frey, DanielStrang, Gilbert2015-01-15T13:52:48+05:002.087en-USdifferential equationslinear algebralinear differential equationsordinarypartialvector spacefirst ordersecond orderHeavisidedeltaDiracexponentialsinusoidrealcomplexforced oscillationsLaplace transformgraphnonlinearsourcesinksaddlespiralEulerlinearizationGuassianmatrixmechanical engineereigenvectoreigenvalueexponentiationleast squaresMIT OpenCourseWare https://ocw.mit.eduContent within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm2.627 Fundamentals of Photovoltaics (MIT)Fundamentals of photoelectric conversion: charge excitation, conduction, separation, and collection. Lectures cover commercial and emerging photovoltaic technologies and cross-cutting themes, including conversion efficiencies, loss mechanisms, characterization, manufacturing, systems, reliability, life-cycle analysis, risk analysis, and technology evolution in the context of markets, policies, society, and environment. This course is one of many OCW Energy Courses, and it is an elective subject in MIT's undergraduate Energy Studies Minor. This Institute–wide program complements the deep expertise obtained in any major with a broad understanding of the interlinked realms of science, technology, and social sciences as they relate to energy and associated environmental challenges.
https://ocw.mit.edu/courses/mechanical-engineering/2-627-fundamentals-of-photovoltaics-fall-2013
Fall2013Buonassisi, Tonio2015-01-05T16:48:29+05:002.6272.626en-USphotovoltaicsrenewable energysolarpn-junctionquantum efficiencybandgapthermalizationsemiconductorthin filmscharge excitationconductioncommercializationemerging technologiesconversion efficienciesloss mechanismsmanufacturinglife-cycle analysismarketspolicysocietyenvironmentMIT OpenCourseWare https://ocw.mit.eduContent within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm2.14 Analysis and Design of Feedback Control Systems (MIT)This course develops the fundamentals of feedback control using linear transfer function system models. Topics covered include analysis in time and frequency domains; design in the s-plane (root locus) and in the frequency domain (loop shaping); describing functions for stability of certain non-linear systems; extension to state variable systems and multivariable control with observers; discrete and digital hybrid systems and use of z-plane design. Students will complete an extended design case study. Students taking the graduate version (2.140) will attend the recitation sessions and complete additional assignments.
https://ocw.mit.edu/courses/mechanical-engineering/2-14-analysis-and-design-of-feedback-control-systems-spring-2014
Spring2014Trumper, David2014-10-08T15:51:07+05:002.142.140en-USfeedback loopscontrol systemscompensationBode plotsNyquist plotsstate spacefrequency domaintime domaintransfer functionsLaplace transformroot locusop-ampsgearsmotorsactuatorsnonlinear systemsstability theorycontrol systemsdynamic feedbackmechanical engineering problem archiveMIT OpenCourseWare https://ocw.mit.eduContent within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm2.A35 Biomimetic Principles and Design (MIT)Biomimetics is based on the belief that nature, at least at times, is a good engineer. Biomimesis is the scientific method of learning new principles and processes based on systematic study, observation and experimentation with live animals and organisms. This Freshman Advising Seminar on the topic is a way for freshmen to explore some of MIT's richness and learn more about what they may want to study in later years.
https://ocw.mit.edu/courses/mechanical-engineering/2-a35-biomimetic-principles-and-design-fall-2013
Fall2013Triantafyllou, Michael2014-06-13T16:10:33+05:002.A35en-USbiomimeticsbiomimicrybiomimesisnaturereverse engineeringbionicsadaptationgenetic algorithmspoliticsdesignimitaterobotroboticsrobotunafluid mechanicsfishswimsubmarinecomplexityMIT OpenCourseWare https://ocw.mit.eduContent within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm2.06 Fluid Dynamics (MIT)This class provides students with an introduction to principal concepts and methods of fluid mechanics. Topics covered in the course include pressure, hydrostatics, and buoyancy; open systems and control volume analysis; mass conservation and momentum conservation for moving fluids; viscous fluid flows, flow through pipes; dimensional analysis; boundary layers, and lift and drag on objects. Students will work to formulate the models necessary to study, analyze, and design fluid systems through the application of these concepts, and to develop the problem-solving skills essential to good engineering practice of fluid mechanics in practical applications.
https://ocw.mit.edu/courses/mechanical-engineering/2-06-fluid-dynamics-spring-2013
Spring2013Varanasi, Kripa2014-05-09T20:44:45+05:002.06en-USfluiddynamicsmechanicsengineeringflowaerodynamicssurfacewavehydrostaticbuoyancyviscousviscosityliftdragphysicsMIT OpenCourseWare https://ocw.mit.eduContent within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm2.086 Numerical Computation for Mechanical Engineers (MIT)This class introduces elementary programming concepts including variable types, data structures, and flow control. After an introduction to linear algebra and probability, it covers numerical methods relevant to mechanical engineering, including approximation (interpolation, least squares and statistical regression), integration, solution of linear and nonlinear equations, ordinary differential equations, and deterministic and probabilistic approaches. Examples are drawn from mechanical engineering disciplines, in particular from robotics, dynamics, and structural analysis.
https://ocw.mit.edu/courses/mechanical-engineering/2-086-numerical-computation-for-mechanical-engineers-spring-2013
Spring2013Patera, Anthony T.2014-03-18T17:37:49+05:002.086en-USMATLABnumerical analysisprogrammingphysical modelingcalculuslinear algebraMonte Carlo Methoddifferential equationsnonlinear systemsvariable typesdata structureflow controlprobabilitystatisticsroboticsMIT OpenCourseWare https://ocw.mit.eduContent within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm2.04A Systems and Controls (MIT)This course provides an introduction to linear systems, transfer functions, and Laplace transforms. It covers stability and feedback, and provides basic design tools for specifications of transient response. It also briefly covers frequency-domain techniques.
https://ocw.mit.edu/courses/mechanical-engineering/2-04a-systems-and-controls-spring-2013
Spring2013Barbastathis, George2014-01-07T16:51:38+05:002.04Aen-USsystemscontrolsordinary differential equationsODEsdifferential equationsLaplacetransfer functionflywheelcircuitsimpedancefeedbackroot locuslinear systemsLaplace transformsstabilityfrequency-domainskyscaperMIT OpenCourseWare https://ocw.mit.eduContent within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm2.682 Acoustical Oceanography (MIT)This course will begin with brief overview of what important current research topics are in oceanography (physical, geological, and biological) and how acoustics can be used as a tool to address them. Three typical examples are climate, bottom geology, and marine mammal behavior. Will then address the acoustic inverse problem, reviewing inverse methods (linear and nonlinear) and the combination of acoustical methods with other measurements as an integrated system. Last part of course will concentrate on specific case studies, taken from current research journals. This course is taught on campus at MIT and with simultaneous video at Woods Hole Oceanographic Institution.
https://ocw.mit.edu/courses/mechanical-engineering/2-682-acoustical-oceanography-spring-2012
Spring2012Lynch, James2013-12-05T17:01:28+05:002.682en-USoceanographyacousticsshallow water acousticsacoustical oceanographyWHOIMIT OpenCourseWare https://ocw.mit.eduContent within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm2.003SC Engineering Dynamics (MIT)This course is an introduction to the dynamics and vibrations of lumped-parameter models of mechanical systems. Topics covered include kinematics, force-momentum formulation for systems of particles and rigid bodies in planar motion, work-energy concepts, virtual displacements and virtual work. Students will also become familiar with the following topics: Lagrange's equations for systems of particles and rigid bodies in planar motion, and linearization of equations of motion. After this course, students will be able to evaluate free and forced vibration of linear multi-degree of freedom models of mechanical systems and matrix eigenvalue problems.
https://ocw.mit.edu/courses/mechanical-engineering/2-003sc-engineering-dynamics-fall-2011
Fall2011Vandiver, J. KimGossard, David2013-09-03T17:47:19+05:002.003SC1.053Jen-USdynamics and vibrationslumped-parameter modelskinematicsmomentumsystems of particles and rigid bodieswork-energy conceptsvirtual displacements and virtual workLagrange's equationsequations of motionlinear stability analysisfree and forced vibrationlinear multi-degree of freedom modelsmatrix eigenvalue problemsMIT OpenCourseWare https://ocw.mit.eduContent within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm2.086 Numerical Computation for Mechanical Engineers (MIT)This class introduces elementary programming concepts including variable types, data structures, and flow control. After an introduction to linear algebra and probability, it covers numerical methods relevant to mechanical engineering, including approximation (interpolation, least squares and statistical regression), integration, solution of linear and nonlinear equations, ordinary differential equations, and deterministic and probabilistic approaches. Examples are drawn from mechanical engineering disciplines, in particular from robotics, dynamics, and structural analysis. Assignments require MATLAB® programming.
https://ocw.mit.edu/courses/mechanical-engineering/2-086-numerical-computation-for-mechanical-engineers-fall-2012
Fall2012Patera, Anthony T.Frey, DanielHadjiconstantinou, Nicholas2013-07-10T16:31:46+05:002.086en-USMATLABnumerical analysisprogrammingphysical modelingcalculuslinear algebraMonte Carlo Methoddifferential equationsnonlinear systemsMIT OpenCourseWare https://ocw.mit.eduContent within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm