Problems for 1- D Heat Equation

3 Problem 4

Solve the inhomogeneous heat problem with type I boundary conditions:

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}; \qquad u(0,t) = 0 = u(1,t); \qquad u(x,0) = P_{\varepsilon}(x)$$

where t > 0, $0 \le x \le 1$, and

$$P_{\varepsilon}(x) = \begin{cases} 0 & \text{if } |x - \frac{1}{2}| > \frac{\varepsilon}{2} \\ \frac{u_0}{\varepsilon} & \text{if } |x - \frac{1}{2}| \le \frac{\varepsilon}{2} \end{cases}$$
 (5)

Note: you already know the solution (just replace $P_{\varepsilon}(x)$ with f(x) and write down the solution from class). Using symmetry of $P_{\varepsilon}(x)$ about 1/2 can be used to simplify the calculation of the Fourier coefficients.

- (a) The temperature at the midpoint of the rod, x = 1/2, at scaled time $t = 1/\pi^2$ is, from (6) and (8),
- (b) Illustrate the solution qualitatively by sketching (i) some typical temperature profiles in the u-t plane (i.e. x= constant) and in the u-x plane (i.e. t= constant), and (ii) some typical level curves u(x,t)= constant in the x-t plane. At what points of the set $D=\{(x,t): 0 \le x \le 1, t \ge 0\}$ is u(x,t) discontinuous?

4 Problem 5

Consider two iron rods (thermal diffusivity $\kappa = 0.15 \text{ cm}^2 \text{ sec}^{-1}$) each 20 cm long and with insulated sides, one at a temperature of 100°C and the other at 0°C throughout. The rods are joined end to end in perfect thermal contact, and their free ends are kept at 0°C . Show that the temperature at the interface 10 minutes after contact has been made approximately 36.5°C . Find an upper bound for the error in your answer. Can this method be applied if the rods are made of glass (thermal diffusivity $\kappa = 0.006 \text{ cm}^2 \text{ sec}^{-1}$)?

5 Problem 7

Consider the heat flow problem with dimensionless position and time,

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}; \quad 0 < x < 1, \quad t > 0$$

$$u(0, t) = 0 = \frac{\partial u}{\partial x}(1, t); \quad t > 0$$

$$u(x, 0) = f(x) \quad 0 < x < 1.$$
(16)

6 Problem 8

Suppose a chemical is dissolved in water, in some long thin reaction container and let ϕ (moles/cm³) indicate its concentration. Fick's Law in chemistry states that the rate of diffusion of a solute is proportional to the negative gradient of the solute concentration. Assume that the chemical is created, due to a chemical reaction, at a rate g(x,t) (moles/cm³ sec).

- (a) Derive a PDE describing the distribution of ϕ . Formulate appropriate BCs and IC and state all assumptions.
 - (b) Show that the solution to the initial boundary value problem derived in (a) is unique.