
LECTURE 17

Proof of the Vanishing Theorem

In this lecture, our goal is to show that, for an extension of nonarchimedean
local fields L/K with Galois group G, we have[

(L⊗K Kunr)×
]tG ' 0.

Recall that this implies that (L×)tG ' ZtG[−2] (which is the main theorem of
cohomological lcft), which in turn implies that Gab ' K×/NL×. For now, we’ll
assume that L/K is totally ramified (a reduction from the general case will occur
later), which implies Lunr = L ⊗K Kunr. Last time, we proved that it suffices to
show that

Ĥ0(G`, L
unr,×) = 0 = Ĥ1(G`, L

unr,×)

for all `-Sylow subgroupsG` ⊆ G, where ` is a prime. Note that, if we letK ′ := LG` ,
then L/K ′ is a G`-Galois extension. Thus, we may replace K by K ′ and G with G`,
so that we may simply assume that G is an `-group (that is, #G = `n for some n).
Now, the latter equality above is simply Hilbert’s Theorem 90 (or the generalization
thereof shown in Problem 3 of Problem Set 7) for the extension Lunr/Kunr, so it
remains to show the former, that is, that the norm map

N: Lunr,× → Kunr,×

is surjective.
We recall the structure theory of `-groups:

Proposition 17.1. Let G be an `-group. Then there is a chain of normal
subgroups

1CG0 C · · ·CGm = G,

such that Gi+1/Gi is cyclic for all i.

Proof. The main step is to show that Z(G) 6= 1 (i.e., the centralizer of G is
non-trivial) if G 6= 1. Let G act on itself via the adjoint action, that is, g·x := gxg−1

for g, x ∈ G. Then the size of every G-orbit is either 1 or divisible by `. Since∑
O∈G-orbits

#O = #G = `n > 1,

and the G-orbit of 1 has order 1, ` must divide the number of G-orbits of size 1,
hence #Z(G) 6= 0. Then, choosing a nontrivial element x ∈ Z(G), we see that
G/〈x〉 is a normal subgroup of G, and the result follows by induction. �

Thus, by Galois theory, we have a series of corresponding cyclic extensions

L = Lm/Lm−1/ · · · /L0 = K.

Since it suffices to show that the norm map is surjective on each of these sub-
extensions (since a composition of surjective maps is surjective), we may assume
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that G is cyclic, say of order n. Recall that N: L× → K× is not surjective, as
we showed #Ĥ0(G,L×) = n. Now, for each m, let K ⊆ Km ⊆ Kunr denote the
degree-m unramified extension of K. The main step is the following:

Claim 17.2. Let x ∈ K×. Then x is in the image of N: L×m → K×m.

Proof. Observe that K×/NL× = O×K/NO
×
L . Indeed, we have the usual short

exact sequence
0→ O×L → L×

v−→ Z→ 0,

which yields the exact sequence

0 = Ĥ−1(Z)→ Ĥ0(O×L ) ↪→ Ĥ0(L×)→ Ĥ0(Z) = Z/nZ,

and the rightmost map is zero since L/K is totally ramified (and therefore n | v(y)

for all y ∈ K×). Thus, we have an isomorphism Ĥ0(L×) ' Ĥ0(O×L ), which is
precisely our observation.

We have a commutative diagram

L× K× K×/NL× 0

L×m K×m K×m/NL
×
m 0

L× K× K×/NL× 0.

N

N

NLm/L NKm/K

N

Now, the composition K×/NL× → K×/NL× of induced maps is raising to the nth
power, hence 0. We’d like to show that the induced map

NKm/K : K×m/NL
×
m → K×/NL×

is an isomorphism, which implies that the induced map K×/NL× → K×/NL× is 0,
proving the claim. By Claim 7.8(3), i.e., our earlier analysis of Herbrand quotients,
both groups have order n, hence this map is injective if and only if it is surjective.
Moreover, it is equivalent to the map

NKm/K : O×Km/NO
×
Lm
→ O×K/NO

×
L

by our observation, and since N: O×Km → O
×
K is surjective by a proof identical to

that of Claim 3.4, this map is surjective too, which completes the proof. �

Again, we have a cyclic group G of order n, and all we need to show is that
N: Lunr,× → Kunr,× is surjective. Applying the claim to K×m, we see that every
element of K×m is the norm of an element of L×m+m′ , and therefore

N:
⋃
m

L×m →
⋃
m

K×m

is surjective. It remains to pass to completions. We know that the image of the
map N: Lunr,× → Kunr,× contains

⋃
mK

×
m, which is dense, so it is enough to show

that the image contains an open neighborhood of 1. Clearly

N(Lunr,×) ⊇ N(Kunr,×) = (Kunr,×)n,

and we saw in Problem 1(a) of Problem Set 1 that every element of 1 + p
2v(n)+1
Kunr is

an nth power in Kunr; this is our desired open neighborhood.
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Finally, we prove the general case of the vanishing theorem, where our G-
extension L/K of nonarchimedean local fields may not be totally ramified. Let
L/L0/K me the (unique) maximal unramified extension of K inside of L, so that
L/L0 is totally unramified. Let H := Gal(L/L0), so that L0/K is Galois with
group G/H.

Lemma 17.3. Let X be a complex of G-modules, and suppose we have an exact
sequence

1→ H → G→ G/H → 1.

If
XtH ' 0 '

(
XhH

)tG/H
,

then XtG ' 0.

�Note that it is not true in general that
(
XtH

)tG/H
= XtG! For instance, if H

is the trivial group, then

XtH = hCoker(N: X → X) = 0,

where here N = idX .

Proof. By the first condition, XhH
qis−−→ XhH , so by the second condition and

Problem 3 of Problem Set 6,

XhG '
(
XhH

)
hG/H

'
(
XhH

)
hG/H

qis−−→
(
XhH

)hG/H ' XhG.

It’s easy to check that this quasi-isomorphism is given by the norm map (it is given
by the composition of two norm maps), which implies that

XtG = hCoker
(
XhG → XhG

)
is acyclic, as desired. �

Now, we’d like to show that
[
(L⊗K Kunr)×

]tG ' 0. Recall that we have

L⊗K Kunr = L⊗L0
L0 ⊗K Kunr = L⊗L0

∏
L0↪→Kunr

Kunr =
∏

L0↪→Kunr

L⊗L0
Kunr

canonically (where the second isomorphism is via the map α⊗β 7→ (i(α)β)i, indexed
over embeddings i : L0 ↪→ Kunr). We have[
(L⊗KKunr)×

]tH ' ∏
L0↪→Kunr

[
(L⊗L0

Kunr)×
]tH ' ∏

L0↪→Kunr

[
(L⊗L0

Lunr
0 )×

]tH ' 0

by the totally ramified case (as L0/K is unramified and L/L0 is totally ramified),
which establishes the first condition of the lemma. To show the second condition,
note that ∏

L0↪→Kunr

[
(L⊗L0 K

unr)×
]hH

=
∏

L0↪→Kunr

Kunr,× ' Kunr,×[G/H]

as a G/H-module (once we fix an embedding L0 ↪→ Kunr). But as shown in Prob-
lem 1(e) of Problem Set 7, Tate cohomology vanishes for induced modules (thus,
the equality above is irrelevant, as we just needed a product over such embeddings
to construct an induced G/H-module). Lemma 17.3 then yields the desired result.
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