
LECTURE 12

Derived Functors and Explicit Projective
Resolutions

Let X and Y be complexes of A-modules. Recall that in the last lecture we
defined HomA(X,Y ), as well as Homder

A (X,Y ) := HomA(P, Y ) for a projective
complex P

qis−−→ X, i.e., a projective resolution of X. We also defined the Ext-
groups ExtiA(X,Y ) := HiHomder

A (X,Y ). The most important example in this
case is A := Z[G], where XhG := Homder

A (Z, X) are the homotopy invariants of
X. This construction has the basic properties that Homder

A (X,−) preserves quasi-
isomorphisms, and P

qis−−→ X is unique up to homotopy, and such homotopies are
unique up to homotopy, which are unique up to homotopy, and so on.

As an aside, note that we can actually define the derived functor Homder(X,−)
more canonically, without choosing a particular projective resolution, via

Homder(X,Y ) := lim−→
P

qis−−→X
projective

Hom(P, Y ),

where the P are ordered by maps of chain complexes

P ′ P X,
qis

qis

which forcibly removes the choice of P .

Claim 12.1. Suppose we have a map of chain complexes f : X1 → X2, which
have projective resolutions P1 and P2, respectively. Then we have a map ϕ : P1 →
P2 such that the following diagram commutes up to homotopy:

X1 X2

P1 P2.

f

qis

ϕ

qis

Moreover, such a map is unique up to homotopy.

Proof. Because the derived functor preserves quasi-isomorphisms, the in-
duced map of complexes of maps

Hom(P1, P2)
qis−−→ Hom(P1, X2)

is a quasi-isomorphism. We are given a map, namely the composition P1 → X1 →
X2, which is killed by the differential since it is a map of chain complexes, and
therefore defines a cohomology class in H0Hom(P1, X2). So there is some coho-
mology class in H0Hom(P1, P2) which is a lift of that map through P2, which is
well-defined and unique up to homotopy. �
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The upshot is that, for every chain complex Y , we get a map

Homder
A (X2, Y )→ Homder

A (X1, Y )

by pulling back along ϕ. A quick “application” is the following:

Claim 12.2. If H ⊆ G is a subgroup and X is a complex of G-modules, then
we get a restriction map XhG → XhH (which is well-defined up to homotopy).

Intuitively, something which is G-invariant is also H-invariant.

Proof. Consider

Z[G/H] = {f : G/H → Z | f nonzero at finitely many points},

which has a G-action via translations and is equivalent to the induced module from
H to G by the trivial module, Z[G]⊗Z[H] Z.

Claim 12.3. Homder
G (Z[G/H], X) ' XhH is a quasi-isomorphism.

Proof. Let PH
qis−−→ Z, where PH is a projective complex of H-modules. Then

we have an induced G-module Z[G]⊗Z[H]PH . Note that Z[G] is free as a Z[H] mod-
ule, as choosing coset representatives forG/H yields a basis. Therefore, Z[G]⊗Z[H]−
preserves quasi-isomorphisms (we know this for Z[H], and then we may regard Z[G]
as a direct sum of copies of Z[H]). This implies that

Z[G]⊗Z[H] PH
qis−−→ Z[G/H],

which is projective as a complex of Z[G]-modules. This is because both Z[G] and
PH are bounded, so it will be bounded, and inducing up to Z[G] preserves projective
modules as we will still obtain a direct summand of a free module. Alternatively,
we could use the universal property that every map to an acyclic complex is null-
homotopic, as a G-equivariant map out of the induced complex is the same as an
H-equivariant map out of PH . This gives the claim, as

Homder
G (Z[G/H], X) := HomG(Z[G]⊗Z[H] PH , X) = HomH(PH , X) =: XhH ,

by definition. �

The upshot is that we get a map XhG → XhH via

ε : Z[G/H]→ Z∑
gi∈G/H

nigi 7→
∑
i

ni,

which is clearly a G-equivariant map when we equip Z with the trivial action. By
the previous discussion, we have a restriction map of derived functors

XhG = Homder
G (Z, X)→ Homder

G (Z[G/H], X) = XhH ,

which is well-defined up to homotopy (defined up to homotopy, etc., our “usual
error”). �

Recall that everything here is a complex of abelian groups, so there is no “type
incompatibility”. In fact, if H ≤ G is finite index, then we have a G-equivariant
map

Z κ−→ Z[G/H]
ε−→ Z
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1 7→
∑

g∈G/H

g,

such that the composition corresponds to multiplication by the index [G : H]. This
gives an inflation map XhH → XhG such that the composition XhG → XhH →
XhG is homotopic to multiplication by [G : H].

More concretely, suppose we had an H-invariant object and a G-invariant ob-
ject. Taking coset representatives of G/H, we could take the “relative norm” of any
H-invariant element, which would yield a G-invariant element. This is precisely
what our maps are doing above, and explains why the composition multiplies by
[G : H].

Definition 12.4. Hi(G,X) := Hi(XhG) is the (hyper-)cohomology of G with
coefficients in X.

The prefix “hyper” used to refer to an operation on complexes; if the complex
was only in degree 0, it would be called “group cohomology.”

Claim 12.5. If X is only in non-negative degrees, that is, Xi = 0 for all i < 0,
then H0(G,X) = H0(X)G and Hi(G,X) = 0 for i < 0.

Proof. Choose some projective resolution P of Z as a G-module, which by the
construction in Proposition 11.9 can be taken to be in non-positive degrees only.
By definition, H0(G,X) is equivalent to the homotopy classes of maps f : P → X,
all of which look like

· · · P−2 P−1 P 0 0 0 · · ·

· · · 0 0 X0 X1 X2 · · · .

d

f

d

Thus, any homotopy of f is 0, and Hi(G,X) = 0 for i < 0 similarly. By commu-
tativity, we must have df = fd = 0. It follows that such maps f are equivalent to
G-equivariant maps

Z = P 0/dP−1 = Coker(P−1 → P 0)→ Ker(X0 → X1) = H0(X)

by quasi-isomorphism, which is equivalent to aG-invariant vector in the cohomology
H0(X) (i.e., via the image of 1). �

We now turn to the problem of constructing explicit projective resolutions of
Z as a G-Module.

Example 12.6. Let G := Z/nZ with generator σ. We claim that the following
is a quasi-isomorphism:

· · · Z[G] Z[G] Z[G] Z[G] 0 · · ·

· · · 0 0 0 Z 0 · · · .

∑
i σ

i
1−σ

∑
i σ

i
1−σ

ε

The vanishing of the negative cohomologies follows from our earlier results on Tate
cohomology, and the kernel of ε, i.e., elements whose coordinates sum to zero, is
the image of 1− σ.
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Corollary 12.7. If M is a G-module (thought of as a complex in degree 0,
then MhG is quasi-isomorphic to the complex

· · · → 0→ 0→M
1−σ−−−→M

∑
i σ

i

−−−−→M
1−σ−−−→ · · · ,

where the first M is in degree 0.

Note that a G-equivariant map from Z[G] to any object is that object. Indeed,
the invariants are the zeroth cohomology group, as desired. Thus, this construction
gives “half of” what we learned earlier with Tate cohomology.

Now we’d like to construct an explicit resolution for every G. Throughout, our
“motto” will be that “all such things come from the bar construction.” Let A be a
commmutative ring, and B an A-algebra; the most important case will be A := Z
and B := Z[G].

Definition 12.8. For all such A and B, the bar complex BarA(B) is

· · · → B ⊗A B ⊗A B
b1⊗b2⊗b2 7→b1b2⊗b3−b1⊗b2b3−−−−−−−−−−−−−−−−−−−→ B ⊗A B

b1⊗b2 7→b1b2−−−−−−−−→ B → 0→ · · ·
with B in degree 0. In general, Bar−nA (B) := B⊗An+1, with differential

b1 ⊗ · · · ⊗ bn+1 7→ b1b2 ⊗ b3 ⊗ · · · ⊗ bn+1

−b1 ⊗ b2b3 ⊗ · · · ⊗ bn+1

+b1 ⊗ b2 ⊗ b3b4 ⊗ · · · ⊗ bn+1

− · · · .

It’s easy enough to see that this differential squares to zero by selectively re-
moving tensors and checking signs, so this is indeed a chain complex.

Claim 12.9. BarA(B) is homotopy equivalent to zero.

Proof. We’d like a null-homotopy of the identity map of BarA(B), that is, a
map h such that hd+ dh+ id:

· · · B ⊗A B ⊗A B B ⊗A B B 0 · · ·

· · · B ⊗A B ⊗A B B ⊗A B B 0 · · · .
idh2

id
h1

id
h0

So define h0(b) := 1⊗ b, and h1(b1 ⊗ b2) := 1⊗ b1 ⊗ b2. Indeed, we then have

(dh′+h0d)(b1⊗b2) = d(1⊗b1⊗b2)+1⊗b1b2 = b1⊗b1−1⊗b1b2 +1⊗b1b2 = b1⊗b2,
as desired. It’s easy to show that defining hn similarly for all n gives a null-
homotopy of the identity. �

As a reformulation, consider the diagram

· · · B ⊗A B ⊗A B B ⊗A B 0 · · ·

· · · 0 B 0 · · · ,
d

where d is the multiplication map in the differential. This is a homotopy equiva-
lence, since its cone is BarA(B).

Consider each term as a bimodule (that is, a module with commuting actions
on the left and right), where we multiply in the first term by B on the left, and
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multiply in the last term by B on the right. These differentials are then bimodule
homomorphisms. Then given a (left) B-module M , we can tensor over B with M ,
which yields a diagram

· · · B ⊗A B ⊗AM B ⊗AM 0 · · ·

· · · 0 M 0 · · ·

b⊗m 7→bm

that is also a homotopy equivalence (the map B ⊗AM → M is the “action map”;
also note that these tensor products make sense since B is an A-module). The
differentials are the same, except the last term is replaced with an element of m,
so for instance we have

b1 ⊗ b2 ⊗m 7→ b1b2 ⊗m− b1 ⊗ b2m.
In words, M is canonically homotopy equivalent to a complex where every term is
of the form B⊗AN , where in this case N stands for B⊗A · · · ⊗AB⊗AM , that is,
a module induced from some A-module.

We now apply this to the case where A := Z, B := Z[G], and M := Z, i.e.,
the trivial module.� Note that this is only a quasi-isomorphism of complexes of
B-modules, and not a homotopy equivalence, as the inverse is only A-linear, and
not B-linear! Indeed, note that such an inverse would be

B ⊗AM
b⊗m 7→bm−−−−−−→M

m 7→1⊗m−−−−−−→ B ⊗AM
b⊗m 7→ bm 7→ 1⊗ bm 6= b⊗m = b(1⊗m),

since the action is on B, not M , and is not an action of B-modules. In general,
existence of a quasi-isomorphism in one direction does not imply existence of one
in the other direction, whereas by fiat homotopy equivalence includes a map in the
other direction and is therefore reflexive. Also, recall that homotopy equivalence
implies quasi-isomorphism.

Thus, we obtain a canonical projective resolution of Z by free G-modules

· · · Z[G3] Z[G×G] Z[G] 0 · · ·

· · · 0 0 Z 0 · · · ,

ε

with differentials (g1, g2) 7→ g1g2 − g1, and so forth, since G acts trivially on Z.
Note that Z[G×G] ' Z[G]⊗Z Z[G], since both have a basis by the elements of the
product group.

This is a great explicit projective resolution of Z for computing group coho-
mology! We end up with a complex of the form

· · · → 0→M → Z[G]⊗M → Z[G×G]⊗M → · · · ,
with M in degree 0 and G finite. Elements in Z[G] ⊗ M in the kernel of the
differential are called group n-cocycles with coefficients inM ; elements in the image
of the differential are called n-coboundaries.
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