
LECTURE 10

Homotopy, Quasi-Isomorphism, and Coinvariants

Please note that proofs of many of the claims in this lecture are left to Problem
Set 5.

Recall that a sequence of abelian groups with differential d is a complex if
d2 = 0, f : X → Y is a morphism of chain complexes if df = fd, and h is a
null-homotopy (of f) if dh+ hd = f , which we illustrate in the following diagram:

· · · X−1 X0 X1 · · ·

· · · Y −1 Y 0 Y 1 · · · .

d

f

d

f
h

fh

d d

The invariants of a chain complex are the homology groups

Hi(X) := Ker(d : Xi → Xi+1)/ Im(d : Xi−1 → Xi),

and for f, g : X ⇒ Y , we say that f ' g, that is, f and g are homotopic, if and
only if there exists a null-homotopy of f − g, which by Lemma 9.10, forces f and g
to give the same map on cohomology.

For a finite group G and extension L/K of local fields with G = Gal(L/K), we
have Ĥ0(G,L×) = K×/NL× by definition. Our goal is to show that Ĥ0(G,L×) '
Gab canonically, i.e., the abelianization of G. Our plan for this lecture will be to
define the Tate cohomology groups Ĥi for each i ∈ Z (which is more complicated
for non-cyclic groups), and then use them to begin working towards a proof of this
fact.

Recall that out basic principle was that, given a homotopy h : f ' g, f and g
are now indistinguishable for all practical purposes (which we will take on faith).
An application of this principle is the construction of cones or homotopy cokernels:

Claim 10.1. If f : X → Y is a map of complexes, then hCoker(f) (a.k.a.
Cone(f)), characterized by the universal property that maps hCoker(f) → Z of
chain complexes are equivalent to maps g : Y → Z plus a null-homotopy h of g ◦
f : X → Z, exists.

Proof. We claim that the following chain complex is hCoker(f):

(10.1) · · · → X0 ⊕ Y −1 → X1 ⊕ Y 0 → X2 ⊕ Y 1 → · · ·

with differential

Xi+1 ⊕ Y i 3
(
x
y

)
d7−→
(
−dx

f(x) + dy

)
∈ Xi+2 ⊕ Y i+1,
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which we note increases the degree appropriately. We may summarize this differ-
ential as a matrix

(−d 0
f d

)
, and we note that it squares to zero as(

−d 0
f d

)(
−d 0
f d

)
=

(
d2 0

−fd+ df d2

)
=

(
0 0
0 0

)
by the definition of a morphism of chain complexes and because both X and Y are
complexes.

We now check that this chain complex satisfies the universal property of hCoker(f).
So suppose we have a map hCoker(f)→ Z, so that the diagram

· · · Xi+1 ⊕ Y i Xi+2 ⊕ Y i+1 · · ·

· · · Zi Zi+1 · · ·
commutes. If we write such a map as (x, y) 7→ h(x) + g(y), then this means

dh(x) +dg(y) = d(h(x) +g(y)) = h(−dx) +g(f(x) +dy) = −h(dx) +gf(x) +g(dy).

Taking x = 0 implies dg = gd, so we must have dh + hd = g ◦ f , hence h is a
null-homotopy of g ◦ f , as desired. �

Corollary 10.2. The composition

X → Y → hCoker(f)

is canonically null-homotopic (as an exercise, construct this null-homotopy explic-
itly!).

Example 10.3. Let

X := (· · · → 0→ A→ 0→ · · · ) and Y := (· · · → 0→ B → 0→ · · · )
for finite abelian groups A and B in degree 0, and let f : A→ B. Then

hCoker(f) = (· · · → 0→ A
f−→ B → 0→ · · · ),

with B in degree 0. Then we have

H0hCoker(f) = Coker(f) and H−1hCoker(f) = Ker(f),

so we see that the language of chain complexes generalizes prior concepts.

Notation 10.4. For a chain complex X, let X[n] denote the shift of X by n
places, that is, the chain complex withXi+n in degree i, with the differential (−1)nd
(where d denotes the differential for X). So for instance, X[1] = hCoker(X → 0).
The content of this is that giving a null-homotopy of 0: X → Y is equivalent to
giving a map X[1]→ Y .

Lemma 10.5. For all maps f : X → Y , the sequence

HiX → HiY → HihCoker(f)

is exact for all i.

Proof. The composition is zero by Lemma 9.10 because X → Y → hCoker(f)
is null-homotopic. To show exactness, let y ∈ Y i such that dy = 0, and suppose
that its image in HihCoker(f) is zero, so that(

0
y

)
=

(
−d 0
f d

)(
α
β

)
=

(
−dα

f(α) + dβ

)
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for some α ∈ Xi with dα = 0 and β ∈ Y i−1. Then f(α) + dβ = y implies f(α) = y
in HiY , as desired. �

Claim 10.6. There is also a notion of the homotopy kernel hKer(f), defined
by the universal property that maps Z → hKer(f) are equivalent to maps Z → X
plus the data of a null-homotopy of the composition Z → X → Y . In particular,
hKer(f) = hCoker(f)[−1].

Example 10.7. Let f : A → B be a map of abelian groups (in degree 0 as
before). Then

hCoker(f) = (· · · → 0→ A
f−→ B → 0→ 0→ · · · )

hKer(f) = (· · · → 0→ 0→ A
f−→ B → 0→ · · · ),

where hKer(f)0 = A. The homotopy cokernel also recovers the kernel and cokernel
in its cohomology.

Claim 10.8. The composition

X
f−→ Y → hCoker(f)

is null-homotopic, so there exists a canonical map

X → hKer(Y → hCoker(f)),

where we refer to the latter term as “the mapping cylinder.” This map is a homotopy
equivalence.

Definition 10.9. A map f : X → Y is a homotopy equivalence if there exist
a map g : Y → X and homotopies gf ' idX and fg ' idY , in which case we write
X ' Y .

It is a quasi-isomorphism if Hi(f) : Hi(X)
∼−→ Hi(Y ) is an isomorphism for

each i (i.e., X and Y are equal at the level of cohomology).

Claim 10.10. If f : X → Y is a homotopy equivalence, then it is a quasi-
isomorphism.

Proof. This is an immediate consequence of Lemma 9.10, which ensures that
f and g are inverses at the level of cohomology. �

Corollary 10.11. Given f : X → Y , there is a long exact sequence

· · · → Hi−1hCoker(f)→ HiX → HiY → HihCoker(f)→ Hi+1X → · · · .

Proof. Letting g denote the map Y → hCoker(f), the composition

Y
g−→ hCoker(f)→ hCoker(g) = hKer(g)[1] ' X[1]

is null-homotopic by Corollary 10.2, and the homotopy equivalence is by Claim 10.8.
So by Lemma 10.5, the sequence

HiY → HihCoker(f)→ HiX[1] = Hi+1X

is exact; a further application of Lemma 10.5 shows the claim. �

Claim 10.12. Suppose f i : Xi ↪→ Y i is injective for all i. Then hCoker(f) →
Y/X (i.e., the complex with Y i/Xi in degree i) is a quasi-isomorphism.
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Example 10.13. If f : A ↪→ B is a map of abelian groups in degree 0, then the
map hCoker(f)→ B/A looks like

· · · A B 0 · · ·

· · · 0 B/A 0 · · · .

It’s easy to see that this is indeed a quasi-isomorphism. Note that there is a dual
statement, that if f i is surjective in each degree, then the homotopy kernel is quasi-
isomorphic to the naive kernel.

Remark 10.14. If A is an associative algebra (e.g. Z or Z[G]), then we can
have chain complexes of A-modules

· · · → X−1 d−→ X0 d−→ X1 → · · · ,
where the Xi are A-modules and d is a map of A-modules. Here the cohomologies
will also be A-modules.

Now, our original problem was to define Tate cohomology for a finite group G
acting on some A. Note that

Ĥ0(G,A) = AG/N(A) = Coker(N: A→ AG).

In fact, we can do better than N: A → AG; the norm map factors through what
we will call the coinvariants.

Definition 10.15. The coinvariants of A are AG := A
/∑

g∈G(g− 1)A, which
satisfies the universal property that it is the maximal quotient of A with gx = x
holding for all x ∈ A and g ∈ G.

Note that we can think of the invariants AG as being the intersection of the
kernels of each (g − 1)A, so it is the maximal submodule of A for which gx = x
holds similarly. Then the norm map factors as

A AG

AG.

N

N

Our plan is now to define derived (complex) versions of AG and AG called AhG
N−→

AhG, and Tate cohomology will be the homotopy cokernel of this map. The basic
observation is that Z is a G-module (i.e. Z[G] acts on Z) in a trivial way, with every
g ∈ G as the identity automorphism. IfM is a G-module, thenMG = HomG(Z,M)
(because the image of 1 in M must be G-invariant and corresponds to the element
of MG) and MG = M ⊗Z[G] Z. Indeed, let I ⊆ A be an ideal acting on M . Then
A/I ⊗AM = M/IM by the right-exactness of tensor products. Here, Z = Z[G]/I,
where I is the “augmentation ideal” generated by elements g − 1 and therefore
MG = M/I as desired.

Now we have the general problem where A is an associative algebra and M
an associative A-module, and we would like the “derive” the functors − ⊗A M
and HomA(M,−). These should take chain complexes of A-modules and produce
complexes of abelian groups, preserving cones and quasi-isomorphisms. We’ll begin
working on this in the next lecture.
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