LECTURE 10

Homotopy, Quasi-Isomorphism, and Coinvariants

Please note that proofs of many of the claims in this lecture are left to Problem
Set 5.

Recall that a sequence of abelian groups with differential d is a complex if
d> =0, f: X — Y is a morphism of chain complexes if df = fd, and h is a
null-homotopy (of f) if dh + hd = f, which we illustrate in the following diagram:

X— 1

e /lf/lf/

Y~ 1

The invariants of a chain complex are the homology groups
HY(X) :=Ker(d: X" = X"™)/Im(d: X"~ = X1,

and for f,g: X = Y, we say that f ~ g, that is, f and g are homotopic, if and
only if there exists a null-homotopy of f — g, which by Lemma 9.10, forces f and g
to give the same map on cohomology.

For a finite group G and extension L/K of local fields with G = Gal(L/K), we
have HO(G,L*) = K*/NL* by definition. Our goal is to show that H°(G, L*) ~
G? canonically, i.e., the abelianization of G. Our plan for this lecture will be to
define the Tate cohomology groups H for each i € Z (which is more complicated
for non-cyclic groups), and then use them to begin working towards a proof of this
fact.

Recall that out basic principle was that, given a homotopy h: f ~ ¢, f and g
are now indistinguishable for all practical purposes (which we will take on faith).
An application of this principle is the construction of cones or homotopy cokernels:

Cram 10.1. If f: X — Y is a map of complexes, then hCoker(f) (a.k.a.
Cone(f)), characterized by the universal property that maps hCoker(f) — Z of
chain complexes are equivalent to maps g: Y — Z plus a null-homotopy h of g o
f: X = Z, exists.

PROOF. We claim that the following chain complex is hCoker(f):
(10.1) = X'y o XleY' s XY -

with differential

ot (7)o (0 Y e xroyin
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which we note increases the degree appropriately. We may summarize this differ-
ential as a matrix (_fd g), and we note that it squares to zero as

<_fd 2) <_fd 2) - (—fji daf c?> B (8 8)

by the definition of a morphism of chain complexes and because both X and Y are
complexes.

We now check that this chain complex satisfies the universal property of hCoker(f).
So suppose we have a map hCoker(f) — Z, so that the diagram

. Xi+1 o) Y7 Xi+2 D Yi+1 ..

| |

Zi Zi+1 - ...

commutes. If we write such a map as (x,y) — h(z) + g(y), then this means

dh(z) +dg(y) = d(h(z) +g(y)) = h(—dx) +g(f () +dy) = —h(dz) +gf(x) +g(dy).
Taking = = 0 implies dg = gd, so we must have dh + hd = g o f, hence h is a
null-homotopy of g o f, as desired. |

COROLLARY 10.2. The composition
X =Y — hCoker(f)
is canonically null-homotopic (as an exercise, construct this null-homotopy explic-
itly!).
ExXAMPLE 10.3. Let
X=(--—>0->4—->0—-) and V:=(--—>0—>B—=>0—--)
for finite abelian groups A and B in degree 0, and let f: A — B. Then

hCoker(f) = (- 502 AL B50—--),
with B in degree 0. Then we have
H°hCoker(f) = Coker(f) and H ™ 'hCoker(f) = Ker(f),
so we see that the language of chain complexes generalizes prior concepts.

NoTATION 10.4. For a chain complex X, let X[n] denote the shift of X by n
places, that is, the chain complex with X**™ in degree i, with the differential (—1)"d
(where d denotes the differential for X). So for instance, X[1] = hCoker(X — 0).
The content of this is that giving a null-homotopy of 0: X — Y is equivalent to
giving a map X[1] = Y.

LEMMA 10.5. For all maps f: X — Y, the sequence
H'X — H'Y — H'hCoker(f)
is exact for all i.

PROOF. The composition is zero by Lemma 9.10 because X — Y — hCoker(f)
is null-homotopic. To show exactness, let y € Y? such that dy = 0, and suppose
that its image in H*hCoker(f) is zero, so that

()= D ()= (otan)
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for some a € X* with da = 0 and 8 € Y1, Then f(a) +dfS = y implies f(a) =y
in H'Y', as desired. O

CrLAaM 10.6. There is also a notion of the homotopy kernel hKer(f), defined
by the universal property that maps Z — hKer(f) are equivalent to maps Z — X
plus the data of a null-homotopy of the composition Z — X — Y. In particular,

hKer(f) = hCoker(f)[—1].

EXAMPLE 10.7. Let f: A — B be a map of abelian groups (in degree 0 as
before). Then

hCoker(f):(~-~—>O—>AL>B—>0—>0—>--~)

hKer(f):(-~~—>O—>0—>Ai>B—>O—>~-~),

where hKer(f)? = A. The homotopy cokernel also recovers the kernel and cokernel
in its cohomology.

CLAIM 10.8. The composition

X L v - hCoker(f)
is null-homotopic, so there exists a canonical map
X — hKer(Y — hCoker(f)),

where we refer to the latter term as “the mapping cylinder.” This map is a homotopy
equivalence.

DEFINITION 10.9. A map f: X — Y is a homotopy equivalence if there exist
amap ¢g: Y — X and homotopies gf ~ idx and fg ~ idy, in which case we write
X~Y.

It is a quasi-isomorphism if H'(f): HY(X) — H(Y) is an isomorphism for
each i (i.e., X and Y are equal at the level of cohomology).

CramM 10.10. If f: X — Y is a homotopy equivalence, then it is a quasi-
isomorphism.

PRrROOF. This is an immediate consequence of Lemma 9.10, which ensures that
f and g are inverses at the level of cohomology. O

COROLLARY 10.11. Given f: X — Y, there is a long exact sequence
- = H'" 'hCoker(f) - H'X — H'Y — H'hCoker(f) — H"™'X — ... .
PROOF. Letting g denote the map Y — hCoker(f), the composition

Y % hCoker(f) — hCoker(g) = hKer(g)[1] ~ X[1]

is null-homotopic by Corollary 10.2, and the homotopy equivalence is by Claim 10.8.
So by Lemma 10.5, the sequence

H'Y — H'hCoker(f) — H'X[1] = H'"' X
is exact; a further application of Lemma 10.5 shows the claim. [l

CraM 10.12. Suppose fi: X' — Y is injective for all i. Then hCoker(f) —
Y/X (i.e., the complex with Y/ X" in degree i) is a quasi-isomorphism.
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ExampLE 10.13. If f: A — B is a map of abelian groups in degree 0, then the
map hCoker(f) — B/A looks like

A B 0

|

v —— 00— B/A—0—— ---.

It’s easy to see that this is indeed a quasi-isomorphism. Note that there is a dual
statement, that if f* is surjective in each degree, then the homotopy kernel is quasi-
isomorphic to the naive kernel.

REMARK 10.14. If A is an associative algebra (e.g. Z or Z[G]), then we can
have chain complexes of A-modules

1 d d
e XS XY S X

where the X* are A-modules and d is a map of A-modules. Here the cohomologies
will also be A-modules.

Now, our original problem was to define Tate cohomology for a finite group G
acting on some A. Note that

H(G, A) = A°/N(A) = Coker(N: A — A%).

In fact, we can do better than N: A — A%; the norm map factors through what
we will call the coinvariants.

DEFINITION 10.15. The coinvariants of A are Ag := A/ deG(g —1)A, which
satisfies the universal property that it is the maximal quotient of A with gz = x
holding for all z € A and g € G.

Note that we can think of the invariants A® as being the intersection of the
kernels of each (g — 1)A, so it is the maximal submodule of A for which gz = x
holds similarly. Then the norm map factors as

AN AG

l /Z
N e
o

Ac.

Our plan is now to define derived (complex) versions of Ag and A% called Ayg x,
APGand Tate cohomology will be the homotopy cokernel of this map. The basic
observation is that Z is a G-module (i.e. Z[G] acts on Z) in a trivial way, with every
g € G as the identity automorphism. If M is a G-module, then M¢ = Homg(Z, M)
(because the image of 1 in M must be G-invariant and corresponds to the element
of M%) and Mg = M ®z(a) Z. Indeed, let I C A be an ideal acting on M. Then
A/I®s M = M/IM by the right-exactness of tensor products. Here, Z = Z[G]/1,
where [ is the “augmentation ideal” generated by elements g — 1 and therefore
Mg = M/I as desired.

Now we have the general problem where A is an associative algebra and M
an associative A-module, and we would like the “derive” the functors — ® 4 M
and Hom 4 (M, —). These should take chain complexes of A-modules and produce
complexes of abelian groups, preserving cones and quasi-isomorphisms. We’ll begin
working on this in the next lecture.
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