Lecture # 11

Batteries & Energy Storage

Ahmed F. Ghoniem

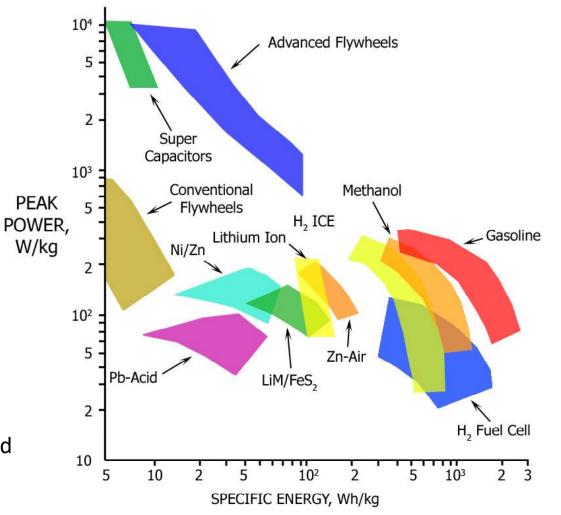
March 9, 2020

- Storage technologies, for mobile and stationary applications ..
- Batteries, primary and secondary, their chemistry.
- Thermodynamics and electrochemistry
- Performance,

٦ ۲

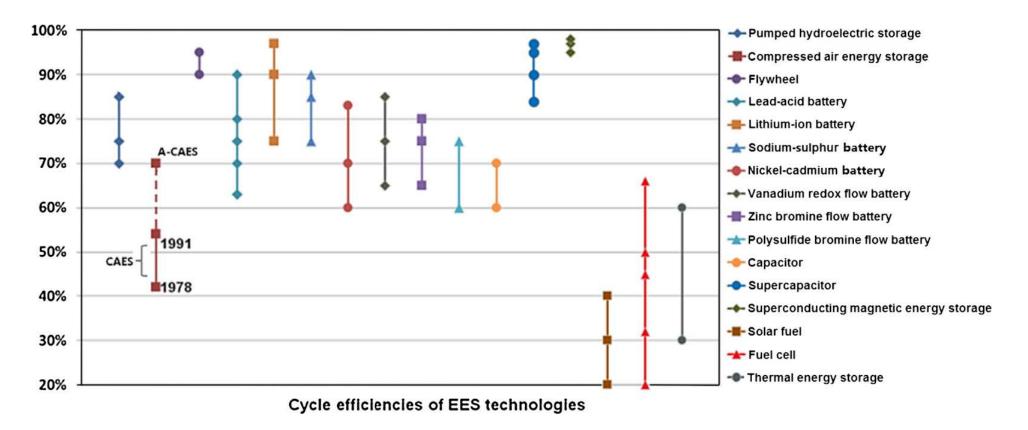
1

H


THE RAGONE DIAGRAM is more applicable to mobile applications. Electric mobility is totally dependent on battery storage.

an important definition:

Round trip efficiency:


 $\eta_{\textit{round}} = \eta_{\textit{charg}e} \eta_{\textit{discharg}e}$

For stationary applications, criteria for selection and hence technologies can be very different.

[©] Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

THE RAGONE DIAGRAM. Figure shows approximate estimates for peak power density and specific energy for a number of storage technology mostly for mobile applications.

Round-trip efficiency of electrical energy storage technologies. Markers show efficiencies of plants which are currently in operation.

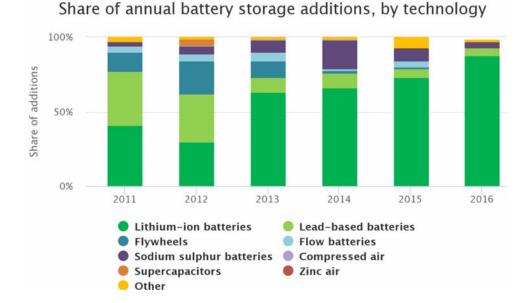
Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Xing Luo, et al. Applied energy, 137:511–536, 2015. Niklas Hartmann, et al. Applied Energy, 93:541–548, 2012. Behnam Zakeri and Sanna Syri. 42:569–596, 2015.

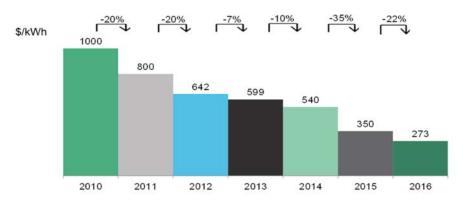
Energy Storage: Overview and other options

The table shows technologies for stationary and mobile applications including mechanical and electrochemical. Capacitors are integral parts of mobile storage!

Not inclusive and other options are available and under development.


Does not show thermal (storage) and chemical (hydrogen, fuels and thermochemical) options which are very important.

Prices change constantly but comparison is still reasonable.


Characteristic	PHS	CAES	Batteries	Flywheel
Energy Range (MJ)	1.8x10 ⁶ -	180,000-	1,800 -	1 – 18,000
	36x10 ⁶	18x10 ⁶	180,000	
Power Range (MW)	100-1000	100-1000	0.1 - 10	1-10
Overall Cycle Efficiency	64-80%	60-70%	~75%	~90%
Charge/Discharge Time	Hours	Hours	Hours	Minutes
Cycle Life	10,000	10,000	2,000	10,000
Footprint/Unit Size	Large if	Moderate if	Small	Small
	above	under ground		
	ground			
Siting Ease	Difficult	Difficult-	N/A	N/A
		Moderate		
Maturity	Mature	Development	Mature	Development
			except for	
			flow type	
Estimated Capital Costs	600 -	500-1,000	100-200	200 - 500
- Power (\$/kWe)	1,000		(LA)	
Estimated Capital Costs	10 - 15	10 - 15	150-300	100 - 800
- Energy (\$/kWh)				

Batteries

- Similar to fuel cells in that they convert chemical to electrical energy directly, and the secondary type can reverse the reactions
- But they store their chemicals internally in their electrodes (except for flow batteries)
- Have seen a very wide range of applications, at many scales for centuries!
- Still relatively expensive for large scales storage deployment, although convenient.
- Also heavier than ideal in mobile application.
- Must be carefully managed thermally to avoid thermal run away and fires.

BNEF lithium-ion battery price survey, 2010-16 (\$/kWh)

Both images © Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

Primary Batteries: the alkaline dry cell

A schematic drawing showing the internal detail of an alkaline battery

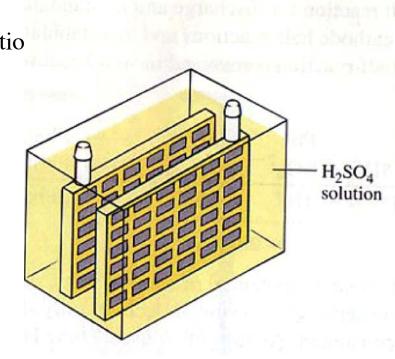
Zn: Zink Mn: Manganese

Secondary Batteries: The Lead Acid Battery (look under the hood)

a lead electrode and a lead oxide electrode are immersed in sulfuric acid-water solutio

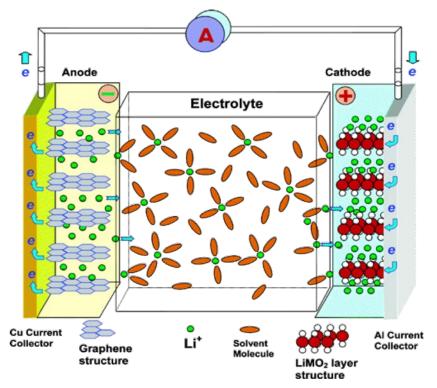
During discharge:

$$Pb_{(s)} + PbO_{2(s)} + 2H_2SO_{4(aq)} \rightarrow PbSO_{4(s)} + 2H_2O_{(aq)}$$


The Redox reactions:

$$Pb_{(s)} + SO_{4(aq)}^{2-} \rightarrow PbSO_{4(s)} + 2e^{-}$$

$$PbO_{2(s)} + 4H^{+} + SO_{4}^{2-} + 2e^{-} \rightarrow PbSO_{4(s)} + 2H_{2}O_{(l)}$$


$$\Delta \boldsymbol{\mathcal{E}} = 2.04V$$

During charging, the above reactions are reversed by applying an external voltage. Lead acid batteries charge below this value to prevent water electrolysis can be dangerous but used extensively in cars, etc.

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

Lithium-ion batteries

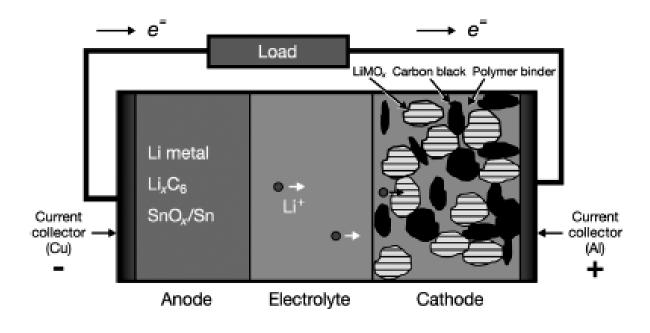
Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503-11618 (2014).

© American Chemical Society. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

- Anode (-ve electrode, electrons leaving): Li metal and graphite
- Cathode (+ve electrode, electrons returning): Metal oxides (MnO₂, CoO₂, LiFePO₄)
- Electrolyte: Organic solvents, carbonates and lithium salts (LiPF₆)
- Current collectors, Cu on the anode side and Al on the cathode side.

- During operation, reversible Li⁺ intercalation (insertion) into the layered electrodes' materials (leaving graphite anode during discharge).
- The overall reaction, where x is the fraction of the anode Li leaving and joining the cathode lithium cobalt oxide:

$$Li_xC_6 + Li_{1-x}CoO_2 \leftrightarrow C_6 + LiCoO_2$$


- Forward reaction: discharge ($\Delta G < 0$), Li⁺ move towards cathode, as shown in figure
- Reverse reaction: charge ($\Delta G > 0$)

Lithium-ion batteries

During discharge (cobalt cathode): Anode: $xLi_{(s)}(C) \rightarrow xLi_{(sol)}^{+} + xe^{-} + (C)$ Cathode: $xLi^{+} + xe^{-} + Li_{1-x}CoO_{2(s)} \rightarrow LiCoO_{2(s)}$ Overall: $Li_{(s)} + CoO_{2(s)} \rightarrow LiCoO_{2(s)}$ The backward reactions occur during charging.

Material	Theoretical Voltage V	Theoretical specific energy Wh/kg
Li/CoO ₂	3.6	570
Li/Mn ₂ O ₄		

Lithium is single valent, giving up a single electron during discharging (more advanced batteries would use multi valent metal such as magnesium).

Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Li-Mn battery during discharge: Li ions move from –ve electrode (anode) to +ve electrode (cathode) through solid or liquid electrolyte

Specific Energy

The <u>theoretical specific energy</u> is $-\Delta G_R / \sum M_i$ where the sum is taken over all the reactants (and products) in the redox reaction.

This expression ignores the mass of the battery housing, inert electrode material and electrolytes.

<u>Actual specific energy</u> is 20-35% of this value because of the weight of these components and the energy losses

(Elton j Cairns, "Batteries, Overview, Encyclopedia of Energy, Vol 1, 2004, Elsevier Inc)

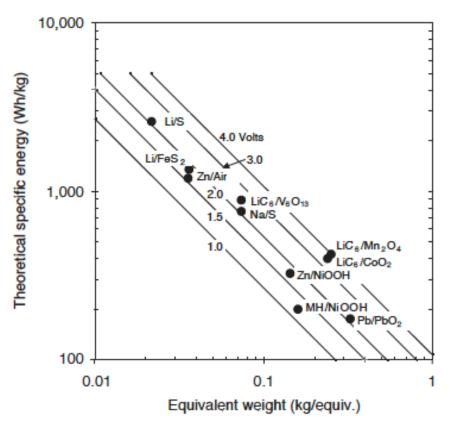
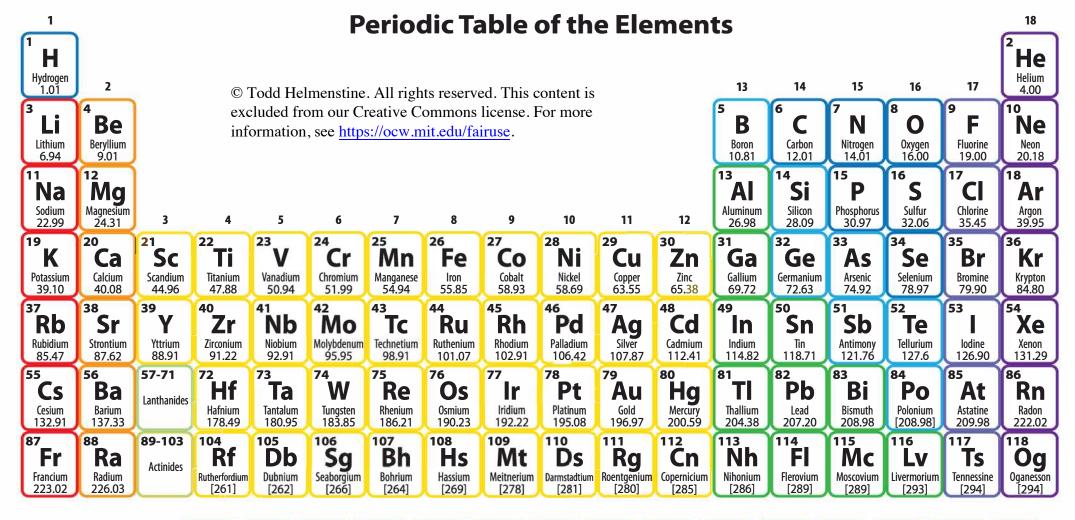


FIGURE 1 Theoretical specific energy for various cells as a function of the equivalent weights of the reactants and the cell voltage.


Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Battery Materials

Electrode materials are selected to maximize the theoretical specific energy of the battery, using reactants/reactions with a large (-ve) ΔG and light weight (small ΣM).

- Negative electrode (anode) reactants that can give up electrons easily have large (-ve) ΔG . These elements are located on the LHS of the periodic table.
- Elements with a low MW are located toward the top of the periodic table.
- Positive electrode (cathode) reactants (oxides) should readily accept electrons. These elements are located on the RHS of the periodic table.

(Elton j Cairns, "Batteries, Overview, Encyclopedia of Energy, Vol 1, 2004, Elsevier Inc)

Alkaline Earth

Transition Metal

Alkali Metal

Basic Metal

Metalloid

57 La Lanthanum 138.91	58 Ce Cerium 140.12	59 Pr Praseodymium 140.91	60 Nd Neodymium 144.24	61 Pm Promethium 144.91	62 Sm Samarium 150.36	63 Eu Europium 151.96	64 Gd Gadolinium 157.25	65 Tb Terbium 158.93	66 Dy Dysprosium 162.50	67 HO Holmium 164.93	68 Er Erbium 167.26	69 Tm Thulium 168.93	70 Yb Ytterbium 173.06	71 Lu Lutetium 174.97
89 Ac	⁹⁰ Th	⁹¹ Pa	92 U	⁹³ Np	94 Pu	⁹⁵ Am	⁹⁶ Cm	97 Bk	⁹⁸ Cf	99 Es	¹⁰⁰ Fm	¹⁰¹ Md	¹⁰² NO	103 Lr
Actinium 227.03	Thorium 232.04	Protactinium 231.04	Uranium 238.03	Neptunium 237.05	Plutonium 244.06	Americium 243.06	Curium 247.07	Berkelium 247.07	Californium 251.08	Einsteinium [254]	Fermium 257.10	Mendelevium 258.10	Nobelium 259.10	Lawrencium [262]

Halogen

Noble Gas

Lanthanide

Actinide

Nonmetal

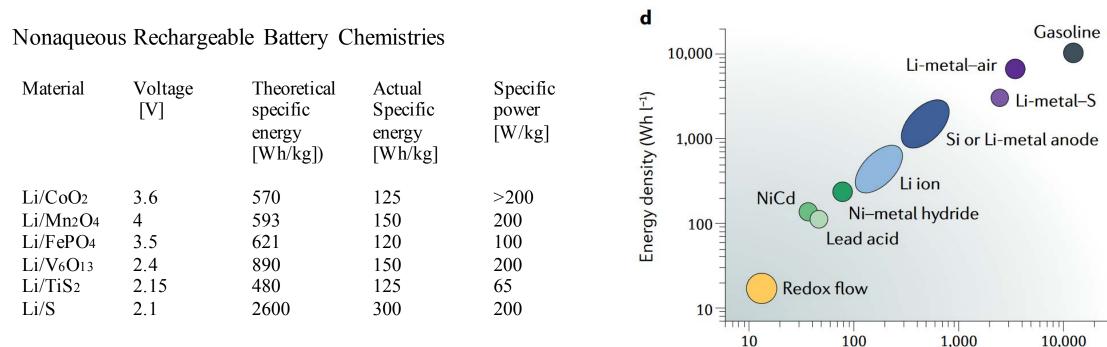
12

Lead-acid, nickel-metal (Cd/Fe/Mn) hydrite and Zinc batteries.

- Th round-trip efficiency of batteries ranges between 70% for nickel/metal hydride and more than 90% for lithium-ion batteries.
- This is the ratio between electric energy out during discharging to the electric energy in during charging.
- The battery efficiency can change on the charging and discharging rates because of the dependency of losses on the current.

Some rechargeable aqueous batteries

System	Cell voltage [V]	Theoretical specific energy [Wh/kg])	Actual specific energy [Wh/kg]	Specific power [W/kg]	Cycle life
Pb/PbO ₂	2.1	175	30-45	50-100	>700
Cd/NiOOH	1.2	209	35-55	400	2000
Fe/NiOOH	1.3	267	40-62	70-150	500-2000
H2/NiOOH	1.3	380	60	160	1000-2000
Zn/NiOOH	1.74	326	55-80	200-300	500
Zn/Air	1.6	1200	65-120	<100	300


Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

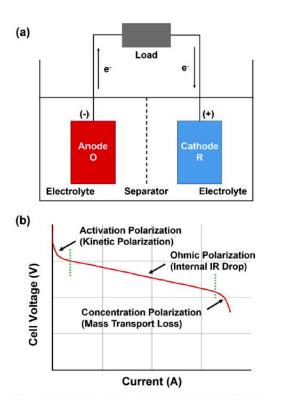
Elton j Cairns, "Batteries, Overview, Encyclopedia of Energy, Vol 1, 2004, Elsevier Inc

The power density is ~ O(20 kW/100kg), need ~ 500 kg to power a 100 kW motor.

Lithium Ion batteries

The open circuit potential of a LiCoO₂ battery is ~ 4.2 V. Specific energy is ~3-5X, specific power is 2X higher than lead-acid. **Table** shows the characteristics of lithium ion batteries with different positive electrode (cathode) materials: Co (cobalt), Mn (manganese), Fe (iron), Ti (titanium), or S (sulfur), etc., for improved stability, specific energy and power.

Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.


"Batteries, Overview" by E Cairns, Encyclopedia of Energy, V 1, 2004, Elsevier.

Lopez, Jeffrey, et al. "Designing polymers for advanced battery chemistries." Nature Reviews Materials 4.5 (2019): 312-330.

Specific energy (Wh kg⁻¹)

© Springer Nature Limited. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

finite current performance

© PECS. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

The i-V curve of a battery resembles that of a fuel cell, with similar loss mechanisms affecting the performance at higher currents.

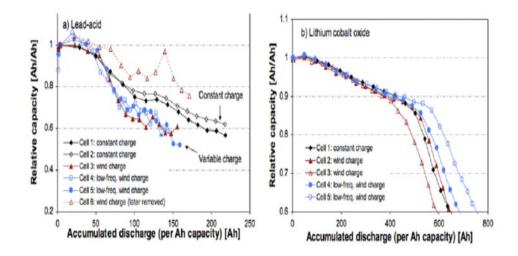
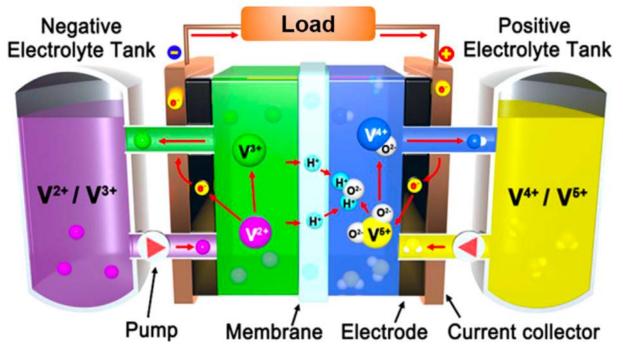


Figure 1: Capacity fade as a function of normalized discharge throughput in a lead-acid and a lithium-ion battery. Lead-acid batteries show rapid capacity fade compared to the lithium-ion batteries. [Source: Krieger et al. 2013⁴]

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.


- Since all the reactants are stored internally, performance can change with degree of discharge.
- As more current is drawn from a battery, the reactants concentrations drop (and products concentrations increase) leading to significant increase in concentration overpotential and performance degradation under deep discharge conditions.

Redox Flow Batteries, the All-Vanadium design

Overall

 $VO_2^++2H^++V^{2+} \rightarrow VO^{2+}+H_2O+V^{3+}$ On the negarive electrode side: $V^{2+} \rightarrow V^{3+} + e^-$ On the positive electode side $VO_2^++2H^++e^- \rightarrow VO^{2+}+H_2O$

Open circuit voltage is ~ 1.26V. Observed efficiency (round trip!) ~85%.

© PECS. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

Cho et al., PECS 48 (2013) 84

MIT OpenCourseWare https://ocw.mit.edu/

2.60J Fundamentals of Advanced Energy Conversion Spring 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.