## The RLC Circuit. Transient Response

## Series RLC circuit

The circuit shown on Figure 1 is called the series $R L C$ circuit. We will analyze this circuit in order to determine its transient characteristics once the switch $S$ is closed.


Figure 1
The equation that describes the response of the system is obtained by applying KVL around the mesh

$$
\begin{equation*}
v R+v L+v c=V s \tag{1.1}
\end{equation*}
$$

The current flowing in the circuit is

$$
\begin{equation*}
i=C \frac{d v c}{d t} \tag{1.2}
\end{equation*}
$$

And thus the voltages $v R$ and $v L$ are given by

$$
\begin{gather*}
v R=i R=R C \frac{d v c}{d t}  \tag{1.3}\\
v L=L \frac{d i}{d t}=L C \frac{d^{2} v c}{d t^{2}} \tag{1.4}
\end{gather*}
$$

Substituting Equations (1.3) and (1.4) into Equation (1.1) we obtain

$$
\begin{equation*}
\frac{d^{2} v c}{d t^{2}}+\frac{R}{L} \frac{d v c}{d t}+\frac{1}{L C} v c=\frac{1}{L C} V s \tag{1.5}
\end{equation*}
$$

The solution to equation (1.5) is the linear combination of the homogeneous and the particular solution $v c=v c_{p}+v c_{h}$

The particular solution is

$$
\begin{equation*}
v c_{p}=V s \tag{1.6}
\end{equation*}
$$

And the homogeneous solution satisfies the equation

$$
\begin{equation*}
\frac{d^{2} v c_{h}}{d t^{2}}+\frac{R}{L} \frac{d v c_{h}}{d t}+\frac{1}{L C} v c_{h}=0 \tag{1.7}
\end{equation*}
$$

Assuming a homogeneous solution is of the form $A e^{s t}$ and by substituting into Equation (1.7) we obtain the characteristic equation

$$
\begin{equation*}
s^{2}+\frac{R}{L} s+\frac{1}{L C}=0 \tag{1.8}
\end{equation*}
$$

By defining

$$
\begin{equation*}
\alpha=\frac{R}{2 L}: \quad \text { Damping rate } \tag{1.9}
\end{equation*}
$$

And

$$
\begin{equation*}
\omega_{o}=\frac{1}{\sqrt{L C}}: \text { Natural frequency } \tag{1.10}
\end{equation*}
$$

The characteristic equation becomes

$$
\begin{equation*}
s^{2}+2 \alpha s+\omega_{o}^{2}=0 \tag{1.11}
\end{equation*}
$$

The roots of the characteristic equation are

$$
\begin{align*}
& s 1=-\alpha+\sqrt{\alpha^{2}-\omega_{o}^{2}}  \tag{1.12}\\
& s 2=-\alpha-\sqrt{\alpha^{2}-\omega_{o}^{2}} \tag{1.13}
\end{align*}
$$

And the homogeneous solution becomes

$$
\begin{equation*}
v c_{h}=A_{1} e^{s l t}+A_{2} e^{s 2 t} \tag{1.14}
\end{equation*}
$$

The total solution now becomes

$$
\begin{equation*}
v c=V s+A_{1} e^{s 1 t}+A_{2} e^{s 2 t} \tag{1.15}
\end{equation*}
$$

The parameters A1 and A2 are constants and can be determined by the application of the initial conditions of the system $v c(t=0)$ and $\frac{d v c(t=0)}{d t}$.

The value of the term $\sqrt{\alpha^{2}-\omega_{o}^{2}}$ determines the behavior of the response. Three types of responses are possible:

1. $\alpha=\omega_{o}$ then $s l$ and $s 2$ are equal and real numbers: no oscillatory behavior

## Critically Damped System

2. $\alpha>\omega_{o}$. Here $s 1$ and $s 2$ are real numbers but are unequal: no oscillatory behavior Over Damped System
$v c=V s+A_{1} e^{s l t}+A_{2} e^{s 2 t}$
3. $\alpha<\omega_{o} \cdot \sqrt{\alpha^{2}-\omega_{o}^{2}}=j \sqrt{\omega_{o}^{2}-\alpha^{2}}$ In this case the roots s1 and s2 are complex numbers: $s 1=-\alpha+j \sqrt{\omega_{o}^{2}-\alpha^{2}}, s 2=-\alpha-j \sqrt{\omega_{o}^{2}-\alpha^{2}}$. System exhibits oscillatory behavior
Under Damped System
Important observations for the series RLC circuit.

- As the resistance increases the value of $\alpha$ increases and the system is driven towards an over damped response.
- The frequency $\omega_{o}=\frac{1}{\sqrt{L C}}(\mathrm{rad} / \mathrm{sec})$ is called the natural frequency of the system or the resonant frequency.
- The parameter $\alpha=\frac{R}{2 L}$ is called the damping rate and its value in relation to $\omega_{o}$ determines the behavior of the response
o $\alpha=\omega_{o}: \quad$ Critically Damped
o $\alpha>\omega_{o}$ : Over Damped
o $\alpha<\omega_{o}$ : $\quad$ Under Damped
- The quantity $\sqrt{\frac{L}{C}}$ has units of resistance

Figure 2 shows the response of the series RLC circuit with $\mathrm{L}=47 \mathrm{mH}, \mathrm{C}=47 \mathrm{nF}$ and for three different values of R corresponding to the under damped, critically damped and over damped case. We will construct this circuit in the laboratory and examine its behavior in more detail.


Figure 2

## The $L C$ circuit.

In the limit $R \rightarrow 0$ the $R L C$ circuit reduces to the lossless $L C$ circuit shown on Figure 3.


Figure 3
The equation that describes the response of this circuit is

$$
\begin{equation*}
\frac{d^{2} v c}{d t^{2}}+\frac{1}{L C} v c=0 \tag{1.16}
\end{equation*}
$$

Assuming a solution of the form $A e^{s t}$ the characteristic equation is

$$
\begin{equation*}
s^{2}+\omega_{o}^{2}=0 \tag{1.17}
\end{equation*}
$$

Where $\omega_{o}=\frac{1}{\sqrt{L C}}$
The two roots are

$$
\begin{align*}
& s 1=+j \omega_{o}  \tag{1.18}\\
& s 2=-j \omega_{o} \tag{1.19}
\end{align*}
$$

And the solution is a linear combination of $A 1 e^{s 1 t}$ and $A 2 e^{s 2 t}$

$$
\begin{equation*}
v c(t)=A 1 e^{j \omega_{o} t}+A 2 e^{-j \omega_{o} t} \tag{1.20}
\end{equation*}
$$

By using Euler's relation Equation (1.20) may also be written as

$$
\begin{equation*}
v c(t)=B 1 \cos \left(\omega_{o} t\right)+B 2 \sin \left(\omega_{o} t\right) \tag{1.21}
\end{equation*}
$$

The constants $A 1$, $A 2$ or $B 1, B 2$ are determined from the initial conditions of the system.

For $v c(t=0)=V o$ and for $\frac{d v c(t=0)}{d t}=0$ (no current flowing in the circuit initially) we have from Equation (1.20)

$$
\begin{equation*}
A 1+A 2=V o \tag{1.22}
\end{equation*}
$$

And

$$
\begin{equation*}
j \omega_{o} A 1-j \omega_{o} A 2=0 \tag{1.23}
\end{equation*}
$$

Which give

$$
\begin{equation*}
A 1=A 2=\frac{V o}{2} \tag{1.24}
\end{equation*}
$$

And the solution becomes

$$
\begin{align*}
v c(t) & =\frac{V o}{2}\left(e^{j \omega_{o} t}+e^{-j \omega_{o} t}\right)  \tag{1.25}\\
& =V o \cos \left(\omega_{o} t\right)
\end{align*}
$$

The current flowing in the circuit is

$$
\begin{align*}
i & =C \frac{d v c}{d t}  \tag{1.26}\\
& =-C V o \omega_{o} \sin \left(\omega_{o} t\right)
\end{align*}
$$

And the voltage across the inductor is easily determined from KVL or from the element relation of the inductor $v L=L \frac{d i}{d t}$

$$
\begin{align*}
v L & =-v c \\
& =-V o \cos \left(\omega_{o} t\right) \tag{1.27}
\end{align*}
$$

Figure 4 shows the plots of $v c(t), v L(t)$, and $i(t)$. Note the 180 degree phase difference between $v c(t)$ and $v L(t)$ and the 90 degree phase difference between $v L(t)$ and $i(t)$.

Figure 5 shows a plot of the energy in the capacitor and the inductor as a function of time. Note that the energy is exchanged between the capacitor and the inductor in this lossless system


Figure 4

(a) Energy stored in the capacitor

(b) Energy stored in the inductor

Figure 5

## Parallel RLC Circuit

The $R L C$ circuit shown on Figure 6 is called the parallel $R L C$ circuit. It is driven by the DC current source $I s$ whose time evolution is shown on Figure 7.


Figure 6


Figure 7

Our goal is to determine the current $i L(t)$ and the voltage $v(t)$ for $t>0$.
We proceed as follows:

1. Establish the initial conditions for the system
2. Determine the equation that describes the system characteristics
3. Solve the equation
4. Distinguish the operating characteristics as a function of the circuit element parameters.

Since the current $I s$ was zero prior to $t=0$ the initial conditions are:

$$
\text { Initial Conditions: }\left\{\begin{array}{c}
i L(t=0)=0  \tag{1.28}\\
v(t=0)=0
\end{array}\right.
$$

By applying KCl at the indicated node we obtain

$$
\begin{equation*}
I s=i R+i L+i C \tag{1.29}
\end{equation*}
$$

The voltage across the elements is given by

$$
\begin{equation*}
v=L \frac{d i L}{d t} \tag{1.30}
\end{equation*}
$$

And the currents $i R$ and $i C$ are

$$
\begin{gather*}
i R=\frac{v}{R}=\frac{L}{R} \frac{d i L}{d t}  \tag{1.31}\\
i C=C \frac{d v}{d t}=L C \frac{d^{2} i L}{d t^{2}} \tag{1.32}
\end{gather*}
$$

Combining Equations (1.29), (1.31), and (1.32) we obtain

$$
\begin{equation*}
\frac{d^{2} i L}{d t^{2}}+\frac{1}{R C} \frac{d i L}{d t}+\frac{1}{L C} i L=\frac{1}{L C} I s \tag{1.33}
\end{equation*}
$$

The solution to equation (1.33) is a superposition of the particular and the homogeneous solutions.

$$
\begin{equation*}
i L(t)=i L_{p}(t)+i L_{h}(t) \tag{1.34}
\end{equation*}
$$

The particular solution is

$$
\begin{equation*}
i L_{p}(t)=I s \tag{1.35}
\end{equation*}
$$

The homogeneous solution satisfies the equation

$$
\begin{equation*}
\frac{d^{2} i L_{h}}{d t^{2}}+\frac{1}{R C} \frac{d i L_{h}}{d t}+\frac{1}{L C} i L_{h}=0 \tag{1.36}
\end{equation*}
$$

By assuming a solution of the form $A e^{s t}$ we obtain the characteristic equation

$$
\begin{equation*}
s^{2}+\frac{1}{R C} s+\frac{1}{L C}=0 \tag{1.37}
\end{equation*}
$$

Be defining the following parameters

$$
\begin{equation*}
\omega_{o} \equiv \frac{1}{\sqrt{L C}}: \text { Resonant frequency } \tag{1.38}
\end{equation*}
$$

And

$$
\begin{equation*}
\alpha=\frac{1}{2 R C}: \text { Damping rate } \tag{1.39}
\end{equation*}
$$

The characteristic equation becomes

$$
\begin{equation*}
s^{2}+2 \alpha s+\omega_{o}^{2}=0 \tag{1.40}
\end{equation*}
$$

The two roots of this equation are

$$
\begin{align*}
& s 1=-\alpha+\sqrt{\alpha^{2}-\omega_{o}^{2}}  \tag{1.41}\\
& s 2=-\alpha-\sqrt{\alpha^{2}-\omega_{o}^{2}} \tag{1.42}
\end{align*}
$$

The homogeneous solution is a linear combination of $e^{s 1 t}$ and $e^{s 2 t}$

$$
\begin{equation*}
i L_{h}(t)=A_{1} e^{s l t}+A_{2} e^{s 2 t} \tag{1.43}
\end{equation*}
$$

And the general solution becomes

$$
\begin{equation*}
i L(t)=I s+A_{1} e^{s l t}+A_{2} e^{s 2 t} \tag{1.44}
\end{equation*}
$$

The constants $A_{1}$ and $A_{2}$ may be determined by using the initial conditions.

Let's now proceed by looking at the physical significance of the parameters $\alpha$ and $\omega_{o}$.

The form of the roots s1 and s2 depend on the values of $\alpha$ and $\omega_{o}$. The following three cases are possible.

1. $\alpha=\omega_{o}$ : Critically Damped System.
$s 1$ and $s 2$ are equal and real numbers: no oscillatory behavior
2. $\alpha>\omega_{o}$ : Over Damped System

Here $s 1$ and $s 2$ are real numbers but are unequal: no oscillatory behavior

## 3. $\alpha<\omega_{o}$ : Under Damped System

$\sqrt{\alpha^{2}-\omega_{o}^{2}}=j \sqrt{\omega_{o}^{2}-\alpha^{2}}$ In this case the roots s1 and s2 are complex numbers:
$s 1=-\alpha+j \sqrt{\omega_{o}^{2}-\alpha^{2}}, s 2=-\alpha-j \sqrt{\omega_{o}^{2}-\alpha^{2}}$. System exhibits oscillatory behavior

Let's investigate the under damped case, $\alpha<\omega_{o}$, in more detail.

For $\alpha<\omega_{o}, \sqrt{\alpha^{2}-\omega_{o}^{2}}=j \sqrt{\omega_{o}^{2}-\alpha^{2}} \equiv j \omega_{d}$ the solution is

$$
\begin{equation*}
i L(t)=I s+\underbrace{e^{-\alpha t}}_{\text {Decaying }} \underbrace{\left(A_{1} e^{j \omega_{d} t}+A_{2} e^{-j \omega_{d} t}\right)}_{\text {Oscillatory }} \tag{1.45}
\end{equation*}
$$

By using Euler's identity $e^{ \pm j \omega_{d} t}=\cos \omega_{d} t \pm j \sin \omega_{d} t$, the solution becomes

$$
\begin{equation*}
i L(t)=I s+\underbrace{e^{-\alpha t}}_{\text {Decaying }} \underbrace{\left(K_{1} \cos \omega_{d} t+K_{2} \sin \omega_{d} t\right)}_{\text {Oscillatory }} \tag{1.46}
\end{equation*}
$$

Now we can determine the constants $K_{1}$ and $K_{2}$ by applying the initial conditions

$$
\begin{align*}
i L(t=0)=0 & \Rightarrow I s+K_{1}=0 \\
& \Rightarrow K_{1}=-I s  \tag{1.47}\\
\left.\frac{d i L}{d t}\right|_{t=0}=0 & \Rightarrow-\alpha K_{1}+\left(0+K_{2} \omega_{d}\right)=0 \\
& \Rightarrow K_{2}=\frac{-\alpha}{\omega_{d}} I s \tag{1.48}
\end{align*}
$$

And the solution is

$$
\begin{equation*}
i L(t)=I s[1-\underbrace{e^{-\alpha t}}_{\text {Decaying }} \underbrace{\left(\cos \omega_{d} t+\frac{\alpha}{\omega_{d}} \sin \omega_{d} t\right)}_{\text {Oscillatory }}] \tag{1.49}
\end{equation*}
$$

By using the trigonometric identity $B_{1} \cos t+B_{2} \sin t=\sqrt{B_{1}^{2}+B_{2}^{2}} \cos \left(t-\tan ^{-1} \frac{B_{2}}{B_{1}}\right)$ the solution becomes

$$
\begin{equation*}
i L(t)=I s-I s \frac{\omega_{o}}{\omega_{d}} e^{-\alpha t} \cos \left(\omega_{d} t-\tan ^{-1} \frac{\alpha}{\omega_{d}}\right) \tag{1.50}
\end{equation*}
$$

Recall that $\omega_{d} \equiv \sqrt{\omega_{o}^{2}-\alpha^{2}}$ and thus $\omega_{d}$ is always smaller than $\omega_{o}$

Let's now investigate the important limiting case:
As $R \rightarrow \infty, \alpha \ll \omega_{0}$
$\omega_{d} \equiv \sqrt{\omega_{o}^{2}-\alpha^{2}} \approx \omega_{o}$ and $\tan ^{-1} \frac{\alpha}{\omega_{o}} \approx 0, e^{-\alpha t} \approx 1$
And the solution reduces to $i L(t)=I s-I s \cos \omega_{o} t$ which corresponds to the response of the circuit


The plot of $i L(t)$ is shown on Figure 8 for $C=47 n F, L=47 \mathrm{mH}, I s=5 A$ and for $R=20 \mathrm{k} \Omega$ and $8 k \Omega$, The dotted lines indicate the decaying characteristics of the response. For convenience and easy visualization the plot is presented in the normalized time $\omega_{o} t / \pi$. Note that the peak current through the inductor is greater than the supply current $I s$.

(a) For $R=8 \mathrm{k} \Omega$

(b) For $R=20 \mathrm{k} \Omega$

Figure 8.


(a) $R=20 \mathrm{k} \Omega$

(b) $R=8 k \Omega$

Figure 9
The energy stored in the inductor and the capacitor is shown on Figure 10.


Figure 10. Energy as a function of time

Figure 11 shows the plot of the response corresponding to the case where $\alpha \ll \omega_{0}$. This shows the persistent oscillation for the current $i L(t)$ with frequency $\omega_{0}$.


Figure 11

## The Critically Damped Response.

When $\alpha=\omega_{o}$ the two roots of the characteristic equation are equal $s l=s 2=s$. And our assumed solution becomes

$$
\begin{align*}
i L(t) & =A_{1} e^{s t}+A_{2} e^{s t}  \tag{1.51}\\
& =A_{3} e^{s t}
\end{align*}
$$

Now we have only one arbitrary constant. This is a problem for our second order system since our two initial conditions can not be satisfied.
The problem stems from an incorrect assumption for the solution for this special case. For $\alpha=\omega_{o}$ the differential equation of the homogeneous problem becomes

$$
\begin{equation*}
\frac{d^{2} i L_{h}}{d t^{2}}+2 \alpha \frac{d i L_{h}}{d t}+\alpha^{2} i L_{h}=0 \tag{1.52}
\end{equation*}
$$

The solution of this equation is ${ }^{1}$

$$
\begin{equation*}
i L(t)=A_{1} t e^{-\alpha t}+A_{2} e^{-\alpha t} \tag{1.53}
\end{equation*}
$$

Which is a linear combination of the exponential term and an exponential term multiplied by t .

[^0]Summary of RLC transient response

|  | Series Parallel |
| :---: | :---: |
| $\omega_{o}$ | $\omega_{o}=\frac{1}{\sqrt{L C}} \quad \omega_{o}=\frac{1}{\sqrt{L C}}$ |
| $\alpha$ | $\alpha=\frac{R}{2 L} \quad \alpha=\frac{1}{2 R C}$ |
| Critically <br> Damped | $\begin{gathered} \alpha=\omega_{o} \\ \text { Response: } A_{1} t e^{-\alpha t}+A_{2} e^{-\alpha t} \end{gathered}$ |
| Under Damped | $\begin{gathered} \text { Response: } \underbrace{e^{-\alpha t}}_{\text {Decaying }} \begin{array}{l} \alpha<\omega_{o} \\ \text { Where } \omega_{d} \equiv \sqrt{\omega_{o}^{2}-\alpha^{2}} \end{array} K_{1} \cos \omega_{d} t+K_{2} \sin \omega_{d} t) \\ \text { Whatry } \end{gathered}$ |
| Over <br> Damped | Response: $A_{1} e^{s 1 t}+A_{2} e^{s 2 t}$ Where $s 1,2=-\alpha \pm \sqrt{\alpha^{2}-\omega_{o}^{2}}$ |

## Problem

For the circuit below, the switch $S 1$ has been closed for a long time while switch $S 2$ is open. Now switch $S 1$ is opened and then at time $t=0$ switch $S 2$ is closed.
Determine the current $i(t)$ as indicated.



[^0]:    ${ }^{1}$ The equation $\frac{d^{2} i}{d t^{2}}+2 \alpha \frac{d i}{d t}+\alpha^{2} i=0$ may be rewritten as $\frac{d}{d t}\left(\frac{d i}{d t}+\alpha i\right)+\alpha\left(\frac{d i}{d t}+\alpha i\right)=0$, by defining $\xi=\frac{d i}{d t}+\alpha i$ the equation becomes $\frac{d \xi}{d t}+\alpha \xi=0$ whose solution is $\xi=K_{1} e^{-\alpha t}$. Therefore $e^{\alpha t} \frac{d i}{d t}+e^{\alpha t} \alpha i=K_{1}$ which may be written as $\frac{d}{d t}\left(e^{\alpha t} i\right)=K_{1}$. By integration we obtain the solution $i=K_{1} t e^{-\alpha t}+K_{2} e^{-\alpha t}$

