12.842 | Fall 2008 | Graduate

Climate Physics and Chemistry


Reading Assignments by Topic


Required Text

Hartmann, D. L. Global Physical Climate. San Diego, CA: Academic Press, 1994, p. 408. ISBN: 9780123285300.

Three good, optional, books which cover biogeochemical, etc. components are:

Houghton, J. T., et al. Climate Change 1994: Radiative Forcing of Climate Change, (IPCC). Cambridge, England; New York, NY: Cambridge University Press, 1995, p. 339. ISBN: 9780521550550.

Schlesinger, W. T. Biogeochemistry - An Analysis of Global Change. San Diego, CA: Academic Press, 1991, p. 443. ISBN: 9780126251562.

Ruddiman, W. L. Earth’s Climate Past and Future. New York, NY: W.H. Freeman, 2000. ISBN: 9780716737414.

The wider literature is now very large. The so-called IPCC report:

Watson, R. T., and the Core Writing Team, eds. Climate Change 2001: Synthesis Report. Cambridge, England; New York, NY: Cambridge University Press, 2002, p. 397. ISBN: 9780521807708.

This is a summary discussion, written by a large international group, of the entire climate problem, with a focus on understanding on-going and future changes. Controversial, but very important. Earlier versions have more scientific material in them.

Basic geological elements:

Press, F., and R. Siever. Earth. 2nd ed. San Francisco, CA: W.H. Freeman, 1982, p. 649. ISBN: 9780716713623.

This is an undergraduate textbook which ranges over much of the earth sciences.

Imbrie, J., and K. P. Imbrie. Ice Ages: Solving the Mystery. Cambridge, MA: Harvard University Press, 2005, p. 224. ISBN: 9780674440753.

This is a basically non-technical, highly readable discussion of the problem of explaining the ice ages, and how the Milankovich hypothesis came to center stage.

A more sweeping account is the Open University book, including elements of human evolution:

Wilson, R. C. L., S. A. Drury, and J. A. Chapman. The Great Ice Age: Climate Change and Life. New York, NY: Routledge, 1999. ISBN: 9780415198417.

Crowley, T. J., and G. R. North. Paleoclimatology. USA, NY: Oxford University Press, 1995, p. 339. ISBN: 9780195105339.

This is a textbook ranging over both the physical and geological elements including discussion of radiation balance, modeling, and the evidence.

A technical summary of present-day physical aspects of climate components may be found in:

Peixoto, J. P., and A. H. Oort. Physics of Climate. New York, NY: Amer Inst Phys, 1992, p. 520. ISBN: 9780883187111.

But their discussion of the ocean is misleadingly primitive.

A non-technical account of a special problem is:

Grove, J. M. The Little Ice Age. Law Book Co of Australasia, 1988, p. 498. ISBN: 9780416315400.

Among the useful textbooks of varying reliability are:

Henderson-Sellers, A. and K. McGuffie. A Climate Modelling Primer. Chichester, NY: John Wiley & Sons, 2005, p. 217. ISBN: 9780470857519.

Graedel, T. E. and P. Crutzen. Atmospheric Change: An Earth System Perspective. New York, NY: W.H. Freeman and Company, 1993, p. 446. ISBN:9780716723325

Cronin, T. M. Principles of Paleoclimatology. New York, NY: Columbia University Press, 1999, p. 560. ISBN:9780231109550.

Kump, L. R. J. F. Kasting, and R. G. Crane. The Earth System. Upper Saddle River, NJ: Prentice Hall, 2003. ISBN: 9780131420595.

Bradley, R. S. Paleoclimatology: Reconstructing Climates of the Quaternary. 2nd ed. Burlington, MA: Academic Press, 1999, p. 613. ISBN: 9780121240103.

Reading Assignments by Topic


Assigned readings

Allegre, C. J., and S. H. Schneider. “The Evolution of the Earth.” Scientific American (October 1994): 66-75.

Kasting, J. F. “Earth’s Early Atmosphere.” Science 259 (1993): 920-926.

Holland, H. D. “Evidence for Life on Earth more than 3850 Million Years Ago.” Science 275 (1997): 38-39.

Owen, T., R. D. Cess, and V. Ramanathan. “Enhanced CO2 Greenhouse to Compensate for Reduced Solar Luminosity on Early Earth.” Nature 277 (1979): 640-642.

Walker, J. C. G., P. B. Hays, and J. F. Kasting. “A Negative Feedback Mechanism for the Long-term Stabilization of Earth’s Surface Temperature.” J Geophys Res 86, no. C10 (1981): 9776-9782.

Recommended readings

Catling, D. C., K. J. Zahnle, and C. P. McKay. “Biogenic Methane, Hydrogen Escape, and the Irreversible Oxidation of Early Earth.” Science 293 (2001): 839-843.

Holland, H. D. “When did the Earth’s Atmosphere become Oxic? A Reply.” Geochem News 100 (July 1999): 20-22. (PDF)

Holland, H. D., B. Lazar, and M. McCaffrey. “Evolution of the Atmosphere and Oceans.” Nature 320 (1986): 27-33.

Kasting, J. F., D. H. Eggler, and S. P. Raeburn. “Mantle Redox Evolution and the Oxidation State of the Archean Atmosphere.” J Geol 101 (1993): 245-257. (PDF - 1.6 MB)

Kump, L. R., and H. D. Holland. “Iron in Precambrian Rocks: Implications for the Global Oxygen Budget of the Ancient Earth.” Geochim Cosmochim Acta 56 (1992): 3217-3223.

Antiquity and origin of life

Schopf, J. W., A. B. Kudryavtsev, D. G. Agresti, T. J. Widowiak, and A. D. Czaja. “Laser-Raman Imagery of Earth’s Earliest Fossils.” Nature 416 (2002): 73-76.

Defends biogenicity of 3.5 Ga Apex microfossils.

Brasier, M. D., O. R. Green, A. P. Jephcoat, A. K. Kleppe, M. J. Van Kranendonk, J. F. Lindsay, A. Steele, and N. V. Grassineau. “Questioning the Evidence for Earth’s Oldest Fossils.” Nature 416 (2002): 76-81.

Geochemical and morphologic evidence against biogenicity of Apex microfossils.

Dalton, R. “Squaring up over Ancient Life.” Nature 417 (2002): 782-784.

Dramatized (tabloid!) report of Brasier-Schopf battle over biogenicity of Apex “fossils”.

Gee, H. “That’s Life?Nature 416 (2002): 28.

Further commentary on debate over Apex fossils.

Garcia-Ruiz, J. M., S. T. Hyde, A. M. Carnerup, A. G. Christy, M. J. Van Kranendonk, and N. J. Welham. “Self-Assembled Silica-Carbonate Structures and Detection of Ancient Microfossils.” Science 302, no. 5648 (2003): 1194-1197.

Inorganic salt structures synthesized that are morphologically similar to Apex “microfossils”.

van Zuilen, M. A., A. Lepland, and G. Arrhenius. “Reassessing the Evidence for the Earliest Traces of Life.” Nature 418 (2002): 627-630.

Molecular and isotopic evidence for cyanobacteria and oxygenic photosynthesis 2.7 Ga.

Tice, M. M., and D. R. Lowe. “Photosynthetic Microbial Mats in the 3,416-Myr-old Ocean.” Nature 431, no. 7008 (2004): 549-552.

Evidence for photosynthetic origin of 3.4 Ga deposits.

Cody, G. D., N. Z. Boctor, T. R. Filley, R. M. Hazen, J. H. Scott, A. Sharma, and H. S. Yoder Jr. “Primordial Carbonylated Iron-sulfur Compounds and the Synthesis of Pyruvate.” Science 289 (2000): 1337-1340.

Shen, Y., and D. E. Canfield. “Isotopic Evidence for Microbial Sulphate Reduction in the Early Archaean Era.” Nature 410 (2001): 77-81.

Wächtershäuser, G. “Life as We Don’t Know it.” Science 289 (2000): 1307-1308.

Snowball earth and pre-cenozoic glaciations

Assigned readings

Hoffman and Schrag. Terra Nova 14, no. 3 (2002): 129-155. (PDF - 1.2 MB)

Lubick. Nature 417 (2002): 12-13.

Recommended readings

Christie-Blick, N. “Pre-Pleistocene Glaciation on Earth: Implications for Climatic History of Mars.” Icarus 50 (1982): 423-443.

Crowell, J. “Gondwana Glaciation, Cyclothems, Continental Positioning, and Climate Change.” Am J Sci 278 (1978): 1345-1372.

Crowley, T. J. and G. R. North. Paleoclimatology. New York, NY: Oxford University Press, 1995, especially chapters 10-12. ISBN: 9780195105339.

Edmond, J. M., M. R. Palmer, C. I. Measures, B. Grant, and R. F. Stallard. “The Fluvial Geochemistry and Denudation of the Guyana Shield in Venezuela, Columbia, and Brazil.” Geochimica et Cosmochimica Acta 59 (1995): 3301-3326.

Evans, D., N. Beukes, and J. Kirschvink. “Low-latitude Glaciation in the Palaeoproterozoic Era.” Nature 386 (1997): 262-266.

Frakes, L. Climates Throughout Geologic Time. New York, NY: Elsevier, 1979, p. 310. ISBN: 9780444419255.

Frakes, L. A., J. E. Francis, and J. I. Syktus. Climate Modes of the Phanerozoic. Cambridge, UK: Cambridge University Press, 1992, p. 274. ISBN: 9780521366274.

Hambray, M., and W. Harland. Earth’s Pre-Pleistocene Glacial Record. New York, NY: Cambridge University Press, 1981, p. 1004. ISBN: 9780521228602.

Hoffman, P. F., and D. P. Schrag. “Snowball Earth.” Sci Am (January 2000): 68-75. (PDF)

Hoffman, P. F., A. J. Kaufman, G. P. Halverson, and D. P. Schrag. “A Neoproterozoic Snowball Earth.” Science 281 (1988): 1342-1346.

Meert, J., and R. van der Voo. “The Neoproterozoic (1000-540 Ma) Glacial Intervals: No More Snowball Earth?Earth Planet Sci Lett 123 (1994): 1-13.

CO2-climate connection

Assigned readings

Veizer, J., Y. Godderis, and L. M. Francois. “Evidence for Decoupling of Atmospheric CO2 and Global Climate during the Phanerozoic Eon.” Nature 408 (2000): 698-701.

Questions CO2-climate link b/c Phanerozoic tropical SST record doesn’t agree with simple energy balance model results driven by paleo-CO2 proxy data.

Kump, L. R. “What Drives Climate?Nature 408 (2000): 651-652.

Skeptical of Veizer results; questions SST proxy record and paleo-CO2 proxy record.

Rothman, D. H. “Atmospheric Carbon Dioxide Levels for the Last 500 million Years.” Proceedings of the National Academy of Sciences 99, no. 7 (2002): 4167-4171.

Berner, R. A. “The Rise of Plants and their Effect on Weathering and Atmospheric CO2.” Science 276 (1997): 544-547.

Suggests evolution of rooted vascular plants caused Devonian (~400 Ma) CO2 draw down by enhancing chemical weathering rates. Supports CO2-climate link through Phanerozoic. Exception is Late Ordovician glaciation, explained by “unique paleogeographic circumstances”.

Royer, D. L., R. A. Bemer, and D. J. Beerling. “Phanerozoic Atmospheric CO2 Change: Evaluating Geochemical and Paleobiological Approaches.” Earth-Science Reviews 54 (2001): 349-392.

Excellent review of paleo-CO2 proxies.

Crowley, T. J. “Carbon Dioxide and Phanerozoic Climate.” In Warm Climates in Earth History. Edited by B. T. Huber, K. G. MacLeod, and S. L. Wing. Cambridge, UK: Cambridge University Press, 2000, pp. 425-444. ISBN: 9780521641425.

Recommended readings

Retallack, G. J. “A 300-million-year Record of Atmospheric Carbon Dioxide from Fossil Plant Cuticles.” Nature 411 (2001): 287-290.

Stomatal indices on fossil leaves during last 300 Myr indicate that the only two periods of low CO2 were associated with known ice ages, in support of the CO2-climate link.

Royer, D. L., S. L. Wing, D. J. Beerling, D. W. Jolley, P. L. Koch, L. J. Hickey, and R. A. Berner. “Paleobotanical Evidence for Near Present-day Levels of Atmospheric CO2 during Part of the Tertiary.” Science 292 (2001): 2310-2313.

Leaf stomatal indices through “known” warm intervals (Miocene 15-17 Ma, and Paleocene/Eocene boundary (53-59 Ma) indicate low CO2, refuting CO2-climate link.

Tarner, L. H., J. F. Hubert, B. P. Coffey, and D. P. McInerney. “Stability of Atmospheric CO2 Levels Across the Triassic/Jurassic Boundary.” Nature 411 (2001): 675-677.

Paleosol δ13C data across Triassic/Jurassic boundary (208 Ma) suggests only small CO2 increase associated w/ that mass extinction. Argue therefore that deposition of larger flood basalts at that time (volcanic events) did not cause high CO2 and runaway greenhouse, as previously hypothesized.

Pagani, M., M. A. Arthur, and K. H. Freeman. “Miocene Evolution of Atmospheric Carbon Dioxide.” Paleoceanography 14 (1999): 273-292.

Phytoplankton δ13C indicates low CO2 through Miocene warm interval (~14-18 Ma) and no sharp drop associated with the expansion of the East Antarctic Sheet, refuting strong CO2-climate link.

Berner, R. A. “Atmospheric Carbon Dioxide Levels over Phanerozoic Time.” Science 249 (1990): 1382-1386.

———. “Paleo-CO2 and Climate.” Nature 358, no. 6382 (1992): 114.

Freeman, K. H., and J. M. Hayes. “Fractionation of Carbon Isotopes by Ancient Phytoplankton and Estimates of Ancient CO2 Levels.” Glob Biogeochem Cycles 6, no. 2 (1992): 185-198.

Hayes, J. M., H. Strauss, and A. J. Kaufman. “The Abundance of 13 C in Marine Organic Matter and Isotopic Fractionation in the Global Biogeochemical Cycle of Carbon during the Past 800 Ma.” Chem Geol 161 (1999): 103-125.

Popp, B. N., R. Takigiku, J. M. Hayes, J. W. Louda, and E. W. Baker. “The Post-Paleozoic Chronology and Mechanisms of 13C Depletion in Primary Marine Organic Matter.” Am J Sci 289 (1989): 436-454.

Tectonics and cenozoic Climate

Assigned readings

Raymo, M. E., and W. F. Ruddiman. “Tectonic Forcing of Late Cenozoic Climate.” Nature 359, no. 6391 (1992): 117-122.

Edmond, J. M. “Himalayan Tectonics, Weathering Processes, and the Strontium Isotope Record in Marine Limestones.” Science 258 (1992): 1594-1597.

Recommended readings

McCauley, S., and D. DePaolo. “The Marine 87Sr/86Sr and δ18O Records, Himalayan Alkalinity Fluxes, and Cenozoic Climate Models.” In Tectonic Uplift and Climate Change. 1st ed. Edited by W. F. Ruddiman. New York, NY: Springer, 1997, pp. 427-467. ISBN: 9780306456428.

Richter, F. M., D. B. Rowley, and D. J. DePaolo. “Sr Isotope Evolution of Seawater: the Role of Tectonics.” Earth Planet Sci Lett 109 (1992): 11-23.

Shackleton, N. J. “The Carbon Isotope Record of the Ceozoic: History of Organic Carbon Burial and of Oxygen in the Ocean and Atmosphere.” In Marine Petroleum Source Rocks, Geological Society Special Publication No. 26. Edited by J. Brooks and A. J. Fleet. 1987, pp. 423-434.

Ocean carbon system

Jorge L. Sarmiento and Nicolas Gruber. “Sinks for Anthropogenic Carbon.”

William Asher and Rik Wanninkhof. “Transient Tracers and Air-Sea Gas Transfer.” J Geophys Res 103, no. C8 (1998): 15939-15958.

Daniel Sigman and Edward Boyle. “Glacial/interglacial Variations in Atmospheric Carbon Dioxide.” Nature 407 (2000): 859-869.

Philip W. Boyd. “Ranking Geo-engineering Schemes.” Nature Geoscience 1 (2008): 722-724.

Course Info

Learning Resource Types
Problem Sets
Lecture Notes