# Calendar

This calendar lists the lecture topics for the course, the instructor in charge of each lecture, and assignment due dates. Most lectures were delivered at MIT, and video-casted live to the National University of Singapore (NUS). Some lectures were delivered at NUS, and video-casted live to MIT. In rare circumstances, students watched a taped lecture.

LEC # TOPICS PRIMARY LECTURER ASSESSMENT
1 Overview J. Peraire

2 Finite Differences: Elliptic Problems J. Peraire

3 Finite Differences: Elliptic Problems J. Peraire

4 Finite Differences: Parabolic Problems B. C. Khoo

5 Finite Differences: Eigenvalue, 2D Problems J. Peraire

6 Solution Methods: Iterative Methods J. Peraire

7 Solution Methods: Multigrid Methods J. Peraire

8 Finite Differences: Hyperbolic Problems J. Peraire

9 Finite Differences: Hyperbolic Problems J. Peraire FD Assignment Due
10 Finite Volumes: Linear Problems J. Peraire

11 Finite Volumes: Conservation Laws J. Peraire

12 Finite Volumes: Nonlinear Problems J. Peraire

13 Finite Elements: Variational Formulation A. T. Patera

14 Finite Elements: Poisson 1D – I A. T. Patera FV Assignment Due
15 Finite Elements: Poisson 1D – II A. T. Patera

16 Finite Elements: Poisson 2D – I A. T. Patera

17 Finite Elements: Poisson 2D – II A. T. Patera

18 Finite Elements: General Elliptic Problems – Overview A. T. Patera

19 Finite Elements: Parabolic Problems, Eigenvalue Problems A. T. Patera

20 Integral Equations: Derivation J. White

21 Integral Equations: Collocation and Galerkin Methods J. White

22 Integral Equations: Convergence Theory – 2nd Kind J. White FE Assignment Due
23 Integral Equations: Quadrature and Cubature J. White

24 Integral Equations: Nystrom Methods J. White

25 Integral Equations: Convergence Theory – 1st Kind J. White

26 Integral Equations: Fast Solvers J. White BI Assignment Due

#### Learning Resource Types

notes Lecture Notes
assignment Problem Sets