Lecture 1: Course Overview and the Basic Set-Up (PDF)
Lecture 2: The BLR Linearity Test and Random Restrictions (PDF)
Lecture 3: PAC Learning and Learning Sparse Functions (PDF)
Lecture 4: Influences of Boolean Functions (PDF)
Lecture 5: Hypercontractive Inequality (PDF)
Lecture 6: The FKN Theorem and the KKL Theorem (PDF)
Lectures 8–10: Noise Stability and Arrow’s Impossibility Theorem (PDF)
Lecture 15: Introduction to Complexity Theory, Approximation Problems, and the PCP Theorem (PDF)
Lecture 16: The Goemans-Williamson Algorithm and A Hardness Result for Max-Cut (PDF)
Lecture 17: Preliminaries, the Reduction, and Analysis of the Reduction (PDF)