LEC # | TOPICS | Readings |
---|---|---|
1 | Introduction | Advances in Random Matrix Theory (PDF) |
2 | The Hermite Ensemble: Wigner’s Semi-Circle Law |
Wigner’s Original Paper: Wigner’s Semi-Circle Law Other Derivations (PDF) |
3 | The Laguerre Ensemble: Marcenko-Pastur Theorem | Jonsson’s Paper: Some limit theorems for the eigenvalues of a sample covariance matrix |
4 | The Jacobi Ensemble: McKay’s Random Graph Theorem | McKay’s Paper: The expected eigenvalue distribution of a large regular graph |
5 | The “Semi-Circular” Element: Central Limit Theorem for Infinite Random Matrices | Speicher: Paper 1 (PDF), Paper 2 (PDF) |
14 | Dr. Anna Scaglione Talk | |
15 | Orthogonal Polynomials and the Classical Matrix Ensembles | Ioana’s Paper: Matrix Models for Beta Ensembles |
16 | Project Progress Presentation | |
17 | Project Progress Presentation (cont.) | |
18 | Tracy Widom Distribution |
Tracy-Widom’s Paper: On the distribution of the largest eigenvalue in principal components analysis Per’s Paper (PDF) |
19 | Eigenvalue Spectrum Fluctuations |
Johansson’s Paper 1: Shape Fluctuations and Random Matrices (PDF) Johansson’s Paper 2: On fluctuations of eigenvalues of random Hermitian matrices Ioana’s Paper: Eigenvalues of Hermite and Laguerre ensembles: Large Beta Asymptotics |
20 | Dr. Roland Speicher Talk | |
21 | Free Probability and Fluctuations | Speicher and Mingo: Paper 1, Paper 2 (PDF) |
22 | Zonal Polynomials and Random Matrices | Stanley’s Paper: Some combinatorial aspects of the spectra of normally distributed random matrices |
23 | Symmetric Group Representations and Free Probability | |
24 | MOPs | Ioana’s Paper: MOPS: Multivariate Orthogonal Polynomials (symbolically) |
25 | Connections and Open Problems | Diaconis’ Paper (PDF) |
26 | Project Presentations | |
27 | Project Presentations (cont.) |
Readings
Course Info
Instructors
Departments
As Taught In
Fall
2004
Level
Topics
Learning Resource Types
notes
Lecture Notes