The complete lecture notes Number Theory I (PDF - 2.7 MB) can be used as the online textbook for this course.
Lecture 1: Absolute Values and Discrete Valuations (PDF)
Lecture 2: Localization and Dedekind Domains (PDF)
Lecture 3: Properties of Dedekind Domains and Factorization of Ideals (PDF)
Lecture 4: Étale Algebras, Norm and Trace (PDF)
Lecture 5: Dedekind Extensions (PDF)
Lecture 6: Ideal Norms and the Dedekind-Kummer Theorem (PDF)
Lecture 7: Galois Extensions, Frobenius Elements, and the Artin Map (PDF)
Lecture 8: Complete Fields and Valuation Rings (PDF)
Lecture 9: Local Fields and Hensel’s Lemmas (PDF)
Lecture 10: Extensions of Complete DVRs (PDF)
Lecture 11: Totally Ramified Extensions and Krasner’s Lemma (PDF)
Lecture 12: The Different and the Discriminant (PDF)
Lecture 13: Global Fields and the Product Formula (PDF)
Lecture 14: The Geometry of Numbers (PDF)
Lecture 15: Dirichlet’s Unit Theorem (PDF)
Lecture 16: Riemann’s Zeta Function and the Prime Number Theorem (PDF)
Lecture 17: The Functional Equation (PDF)
Lecture 18: Dirichlet L-functions and Primes in Arithmetic Progressions (PDF)
Lecture 19: The Analytic Class Number Formula (PDF)
Lecture 20: The Kronecker-Weber Theorem (PDF)
Lecture 21: Class Field Theory: Ray Class Groups and Ray Class Fields (PDF)
Lecture 22: The Main Theorems of Global Class Field Theory (PDF)
Lecture 23: Tate Cohomology (PDF)
Lecture 24: Artin Reciprocity in the Unramified Case (PDF)
Lecture 25: The Ring of Adeles and Strong Approximation (PDF)
Lecture 26: The Idele Group, Profinite Groups, and Infinite Galois Theory (PDF)
Lecture 27: Local Class Field Theory (PDF)
Lecture 28: Global Class Field Theory and the Chebotarev Density Theorem (PDF)