This section contains the course’s reading assignments, which refer to the required textbook:

Agarwal, Anant, and Jeffrey H. Lang. *Foundations of Analog and Digital Electronic Circuits*. San Mateo, CA: Morgan Kaufmann Publishers, Elsevier, July 2005. ISBN: 9781558607354.

Elsevier companion site: supplementary sections and examples

Readings with an asterisk (*) provide key intuitive analyses.

SES # | TOPICS | READINGS |
---|---|---|

L1 | Lumped abstraction relationship to physics, KVL, KCL | Chapter 1 |

R1 | KVL, KCL resistive network analysis | Chapter 2.1-2.5, 2.4* |

L2 | KVL, KCL example, nodal analysis | Chapter 3.1-3.3 |

R2 | Nodal analysis, examples | Chapter 3.1-3.3 |

L3 | Linearity, superposition, Thevenin’s equivalences | Chapter 3.5-3.6 |

R3 | Thevenin and Norton equivalences | Chapter 3.5-3.6 |

L4 | Digital abstraction | Chapter 5.1-5.4 |

R4 | Boolean logic, comb. gates review, examples | Chapter 5.1-5.4, 5.6-5.7 |

R4a | Digital logic, gates, examples | Chapter 5.1-5.4, 5.6-5.7 |

L5 | MOS switch, S and SR model, MOS gate design | Chapter 6.1-6.8 |

R5 | MOS switch resistor (SR) model (cont.) | Chapter 6.1-6.8 |

L6 | Nonlinear resistors, networks | Chapter 4.1-4.3 |

R6 | Static power in dig ckts, nonlinear resistors, examples | Chapter 4.1-4.3 |

L7 | Nonlinear resistors, small signal analysis | Chapter 4.5 |

R7 | Nonlinear resistors, small signal examples | Chapter 4.5 |

L8 | Dependent sources, analog amplification | Chapters 2.6, 7.1-7.2 |

R8 | Dependent sources, amplifiers, operating point analysis, biasing | Chapters 2.6, 7.1-7.2 |

L9 | MOS SCS model and MOS amplifier | Chapter 7.3-7.5 |

R9 | Review MOS SCS model, MOS ckts, MOS amplifier | Chapter 7.3-7.5 |

Q1 | Quiz 1 (evening) | |

R9a | MOS amplifier review | Chapter 7.5 |

L10 | Amplifier large signal analysis | Chapter 7.6-7.7 |

R10 | Review 3-term device representations, amplifier input-output curves | Chapter 7.6-7.7 |

L11 | Amplifier small signal analysis | Chapter 8.1-8.2 |

R11 | Amplifier small signal analysis examples | Chapter 8.1-8.2 |

L12 | Amplifier small signal circuit models | Chapter 8.2.1-8.2.4 |

R12 | Amplifier small signal circuit models and analysis examples | Chapter 8.2.1-8.2.4 |

L13 | Capacitors, first order circuits, examples | Chapters 9.1, 10.1 |

R13 | Inductors and their physics, first order step response, examples | Chapter 10.2 |

L14 | Intuitive analysis of first order systems, examples | Chapter 10.3*, 10.4 |

R14 | Ramp, step, impulse, superposition | Chapters 9.4.2-9.4.3, 10.6 |

L15 | Digital memory, state | Chapter 10.5.3, 10.6.3-10.6.4* |

R15 | Impulse response examples, digital memory arrays | Chapter 10.5.3, 10.6.3-10.6.4* |

L16 | Transients in second order systems | Chapter 12.1 |

R16 | First order examples Second order examples | Chapter 12.1 |

R17 | Second order examples Second order systems with damping | Chapter 12.2, 12.5, 12.7* |

L17 | Second order systems with damping, intuitive analysis | Chapter 12.2, 12.5, 12.7* |

R18 | Damped second order system examples Preview of frequency response | Chapter 12.2, 12.5, 12.7* |

L18 | Sinusoidal steady state analysis, frequency response | Chapter 13.1-13.2 |

Q2 | Quiz 2 (evening) | |

L19 | Impedance methods | Chapter 13.3-13.4.2, 13.4.2* |

R19 | Review of impedance methods and examples | Chapter 13.3-13.4.2* |

L20 | Filters, Q factor, radio tuner | Chapter 13.5, 14.5 |

R20 | Time and frequency domain responses, Q | Chapter 13.6 |

L21 | Op-amp abstraction, concept of feedback, noninverting amplifier | Chapter 15.1-15.4 |

R21 | Op-amp abstraction, examples and review, inverting amplifier | Chapter 15.1-15.4 |

L22 | Multiple inputs and superposition, integrators, differentiators | Chapter 15.5-15.6.2 |

R22 | First and second order op-amp filters | Chapter 15.6.3-15.6.5 |

L23 | Op-amp abstraction, feedback, stability, oscillators, clocking | Chapter 15.7-15.8 |

R23 | Special op-amp circuits | Chapter 15.5-15.8 |

L24 | Energy and power | Chapter 11.1-11.3 |

R24 | Examples, CMOS, energy and power | Chapter 11.5 |

L25 | Breaking the abstraction barrier |