9.641J | Spring 2005 | Graduate

Introduction to Neural Networks

Readings

Lec # Topics READINGS
1 From Spikes to Rates Koch, Christof. Biophysics of Computation: Information Processing in Single Neurons. New York, NY: Oxford University Press, 2004, section 14.2, pp. 335-341. ISBN: 9780195181999.

Ermentrout, Bard. “Reduction of Conductance-Based Models with Slow Synapses to Neural Nets.” Neural Computation 6, no. 4 (July 1994): 679-695.

2 Perceptrons: Simple and Multilayer  
3 Perceptrons as Models of Vision Marr, David. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. New York, NY: W.H. Freeman & Company, 1983, section 2.2, pp. 54-79. ISBN: 9780716715672.

Hubel, David H. Eye, Brain, and Vision. New York, NY: W.H. Freeman & Company, 1988, chapter 3, pp. 39-46. ISBN: 9780716750208.

LeNet Web site

4 Linear Networks  
5 Retina Adelson, E. H. “Lightness Perception and Lightness Illusions.” The New Cognitive Neurosciences. Edited by Michael S. Gazzaniga. 2nd ed. Cambridge, MA: MIT Press, 1999, pp. 339-351. ISBN: 9780262071956.

Hartline, H. K., and F. Ratliff. “Inhibitory Interaction in the Retina of Limulus.” Physiology of Photoreceptor Organs. Edited by Michelangelo G. F. Fuortes. New York, NY: Springer-Verlag, 1972, pp. 382-447. ISBN: 9780387057439.

6 Lateral Inhibition and Feature Selectivity Press, William H., Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes in C: The Art of Scientific Computing_._ New York, NY: Cambridge University Press, 1992, chapters 12, and 13. ISBN: 9780521431088.

Strang, Gilbert. Introduction to Applied Mathematics. Wellesley, MA: Wellesley-Cambridge Press, 1986, section 4.2, pp. 290-309. ISBN: 9780961408800.

7 Objectives and Optimization  
8 Hybrid Analog-Digital Computation

Ring Network

Hahnloser, R. H., R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and H. S. Seung. “Digital selection and analog amplification coexist in a cortex-inspired silicon circuit.” Nature 405, no. 6789 (June 22, 2000): 947-51.

Hahnloser, Richard H., H. Sebastian Seung, and Jean-Jacques Slotine. “Permitted and Forbidden Sets in Symmetric Threshold-Linear Networks.” Neural Computation 15, no. 3 (March 2003): 621-38.

9 Constraint Satisfaction

Stereopsis

 
10 Bidirectional Perception  
11 Signal Reconstruction  
12 Hamiltonian Dynamics  
  Midterm  
13 Antisymmetric Networks  
14 Excitatory-Inhibitory Networks

Learning

 
15 Associative Memory  
16 Models of Delay Activity

Integrators

 
17 Multistability

Clustering

 
18 VQ

PCA

 
19 More PCA

Delta Rule

 
20 Conditioning

Backpropagation

 
21 More Backpropagation  
22 Stochastic Gradient Descent  
23 Reinforcement Learning  
24 More Reinforcement Learning  
25 Final Review  

Course Info

As Taught In
Spring 2005
Level
Learning Resource Types
Lecture Notes
Problem Sets