9.913 | Fall 2004 | Graduate

Pattern Recognition for Machine Vision


Course Meeting Times

Lectures: 1 sessions / week, 2 hours / session


The course is directed towards advanced undergraduate and beginning graduate students. It will focus on applications of pattern recognition techniques to problems of machine vision.

The topics covered in the course will include:

  • Overview of problems of machine vision and pattern classification
  • Image formation and processing
  • Feature extraction from images
  • Biological object recognition
  • Bayesian Decision Theory
  • Clustering
  • Classification


  • Object detection and recognition
  • Morphable models
  • Tracking
  • Gesture recognition

The course will have a strong hands-on component. Some additional reading from current research will be provided.


Basic Linear Algebra, Probability, and Calculus.


Required Textbooks

Duda, Richard O., Peter E. Hart, and David G. Stork. Pattern classification. 2nd ed. New York, NY: Wiley, 2001. ISBN: 0471056693.

Optional Reading

Buy at MIT Press Mallot, Hanspeter A. Computational Vision: Information Processing in Perception and Visual Behavior. Translated by John S. Allen. Cambridge, MA: MIT Press, 2000. ISBN: 0262133814.

Suggested Further Reading

Forsyth, David A., and Jean Ponce. Computer Vision: a Modern Approach. Upper Saddle River, NJ: Prentice Hall, 2003. ISBN: 0130851981.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction: with 200 full-color illustrations. New York, NY: Springer, c2001. ISBN: 0387952845.


Homework 60%
Final Project 30%
Paper Presentation 10%

Course Info

As Taught In
Fall 2004
Learning Resource Types
Simulation Videos
Lecture Notes
Presentation Assignments
Activity Assignments