Response Selection & Control of Movement
Objectives

16.400/453

• Reaction times for increasing decision complexity
 – Simple, recognition, choice experiments
 – Hick-Hyman Law

• Speed accuracy tradeoff
 – Fitts’ law

• Stimulus-Response (S-R) compatibility

• Feedback
Human Information Processing

16.400/453

Image by MIT OpenCourseWare.
The selection of skill based responses

• Reaction Time Studies
• Pioneer reaction time study was conducted by Donders (1868)
 – Simple reaction time is shorter than a Recognition (Go/No Go) reaction time
 – Choice reaction time is longest of all

Types of reaction time experiments

Simple reaction time experiments
- only one stimulus and one response
- 'X at a known location,' 'spot the dot,' and 'reaction to sound'

Recognition reaction time experiments
- there are some stimuli that should be responded to (the 'memory set'), and others that should get no response (the 'distractor set').
- Go/No Go: 'Symbol recognition' and 'tone recognition'

Choice reaction time experiments
- User must give a response that corresponds to the stimulus, (e.g., pressing a key corresponding to letter if the letter appears on screen)

http://biae.clemson.edu/bpc/bp/Lab/110/reaction.htm#Kinds
Simple and choice reaction time

- In a simple reaction time (RT) situation
 - There is no uncertainty what the signal is
 - There is no uncertainty how to respond
 - Sprinter in the starting blocks

- In a choice reaction time task
 (combines recognition and choice)
 - There can be more than one signal
 - More than one type of response
 - Each response corresponds to a signal
Factors affecting simple RT

Slide removed due to copyright restrictions.
Factors affecting simple RT

Slide removed due to copyright restrictions.
Factors affecting choice RT

- Factors affecting simple RT also affect choice
- In a choice response time situation
 - user is transmitting information from stimulus to response
- Hick (1952) and Hyman (1953) performed experiments
 - By varying number of stimulus-response alternatives
- Hick-Hyman Law (H-H Law)
 - Choice RT increases linearly with stimulus information

Hick (1952) On the rate of gain of information. *Quarterly JEP*, 4:11-26, 1952
Hick-Hyman law

When alternatives are equally likely
\[RT = a + b \log_2(N) \]

Also holds when probabilities differ

Decision complexity advantage (typing vs Morse code; deep vs. shallow menus)
Problems with Hick-Hyman

Slide removed due to copyright restrictions.
Speed accuracy tradeoff

- Possible to be fast and error prone OR slow and precise
- People tend to make more errors when they respond more rapidly and vice versa

- Due to strategies that reflect different payoffs between errors and response speed
- Due to control devices that induce faster but less precise control
Control device effect

• QWERTY and Dvorak keyboards
 – Qwerty designed to avoid jamming in typewriters (1868)
 – Dvorak (1932)

• QWERTY persists even though Dvorak is claimed to offer a 5-10% advantage

Further reading: http://wwwpub.utdallas.edu/~liebowit/keys1.html
Speed accuracy tradeoff

- Instructions, auditory vs. visual stimuli, stress
- Regulations in the nuclear industry require workers to wait a certain amount of time before responding

Image by MIT OpenCourseWare.
Speed accuracy tradeoff for aimed movements

Fitts Law

Movement time = a + b \cdot \log_2(2A/W)

= time required to rapidly move from a starting position to a final target area

• A = movement amplitude
• W = target width
• Very general law
• a and b depend on device and user characteristics
Fitts’ law

- **Modified:**
 Movement time = \(a + b \cdot \log_2(A/W + 1)\)

- **Index of difficulty**
 - \(\log_2(A/W + 1)\) or \(\log_2(2A/W)\)

- **Index of performance:**
 - \(IP = 1/b\)
S-R compatibility

Slide removed due to copyright restrictions.
Location compatibility

Slide removed due to copyright restrictions.
Principle of congruence

Slide removed due to copyright restrictions.
Movement compatibility

Slide removed due to copyright restrictions.
Movement proximity

Slide removed due to copyright restrictions.
Movement proximity

Slide removed due to copyright restrictions.
Modality compatibility

Slide removed due to copyright restrictions.
Motor system

• Functions
 – movement
 – posture & balance
 – communication

• Guided by sensory systems
 – internal representation of world & self
 – detect changes in environment
3 classes of movement

- **Voluntary:** reading, writing, playing piano
 - complex actions
 - purposeful, goal-oriented
 - learned: improve with practice

- **Reflexes:** eye-blink, coughing, knee jerk
 - involuntary, rapid

- **Rhythmic motor patterns:** chewing, walking, running
 - combines voluntary & reflexive acts
 - initiation & termination voluntary
 - once initiated, repetitive & reflexive
Movement and muscles

• Movement occurs at joints
 – Degrees of freedom (elbow vs. shoulder?)

• Contraction & relaxation of opposing muscles
 – Agonists: prime movers - flexion
 – Antagonists: counterbalance agonists - extension
 • decelerate movement
 – Activity can be measured through EMG (electromyogram)
Sensorimotor integration

• Movement control more than contraction & relaxation
 – Accurately time control of many muscles
 – Make postural adjustment during movement
 – Adjust for mechanical properties of joints & muscles
 • inertia, changing positions
• Sensory inputs guide movement
 – visual, auditory, tactile
 • location of objects in space
 – Proprioceptive & vestibular
 • position of our body
• Critical for planning & refining movements
• Closed loop vs. open loop control of movement
Error correction

• Feedback:
 – During or after movement
 – Compare actual position with intended position
 – Slower movements

• Feedforward:
 – Sensory events control movements in advance
 • ballistic movements
 – Prediction: internal model of events
 – e.g. catching ball
 • representation of ball trajectory
 • properties of musculoskeletal system
 – Reevaluation after response completed
Feedback

• Feel of button (deflection of key and click of keyboard vs. membrane keyboard)

• Feedback and delays:
 – less than 100 msec to avoid disrupting motor control
 – less than 1.0 sec to avoid disrupting thought
 – less than 10 seconds to keep user’s attention focused on the dialog. Feedback regarding magnitude of delay is critical.
General principles of control design

- Decision complexity
 - Simple choices have faster response than complex
- Response expectancy
 - Reaction Time (RT) much smaller for expected events
- Compatibility
 - Location and movement compatibility should match mental model
- Speed-accuracy tradeoff
 - More errors with speeded response
- Feedback
 - Display of system response