LECTURE 2

Asymptotic Notation
• O-, Ω-, and Θ-notation

Recurrences
• Substitution method
• Iterating the recurrence
• Recursion tree
• Master method
Asymptotic notation

O-notation (upper bounds):

We write $f(n) = O(g(n))$ if there exist constants $c > 0$, $n_0 > 0$ such that $0 \leq f(n) \leq cg(n)$ for all $n \geq n_0$.
Asymptotic notation

\textbf{\textit{O}-notation (upper bounds):}

We write \(f(n) = O(g(n)) \) if there exist constants \(c > 0, n_0 > 0 \) such that \(0 \leq f(n) \leq cg(n) \) for all \(n \geq n_0 \).

\textbf{Example:} \(2n^2 = O(n^3) \) \hspace{1cm} \((c = 1, n_0 = 2) \)
Asymptotic notation

O-notation (upper bounds):

We write \(f(n) = O(g(n)) \) if there exist constants \(c > 0, n_0 > 0 \) such that \(0 \leq f(n) \leq cg(n) \) for all \(n \geq n_0 \).

Example: \(2n^2 = O(n^3) \) \((c = 1, n_0 = 2) \)

functions, not values
Asymptotic notation

\[O \text{-notation (upper bounds):} \]

We write \(f(n) = O(g(n)) \) if there exist constants \(c > 0, \ n_0 > 0 \) such that \(0 \leq f(n) \leq cg(n) \) for all \(n \geq n_0 \).

Example: \(2n^2 = O(n^3) \) \((c = 1, \ n_0 = 2) \)

functions, not values funny, “one-way” equality
Set definition of O-notation

$$O(g(n)) = \{ f(n) : \text{there exist constants } c > 0, n_0 > 0 \text{ such that } 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \}$$
Set definition of O-notation

\[O(g(n)) = \{ f(n) : \text{there exist constants } c > 0, n_0 > 0 \text{ such that } 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \} \]

Example: \(2n^2 \in O(n^3) \)
Set definition of O-notation

\[O(g(n)) = \{ f(n) : \text{there exist constants } c > 0, n_0 > 0 \text{ such that } \ 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \} \]

Example: \(2n^2 \in O(n^3) \)

(Logicians: \(\lambda n.2n^2 \in O(\lambda n.n^3) \), but it’s convenient to be sloppy, as long as we understand what’s *really* going on.)
Macro substitution

Convention: A set in a formula represents an anonymous function in the set.
Macro substitution

Convention: A set in a formula represents an anonymous function in the set.

Example: \(f(n) = n^3 + O(n^2) \)

means

\[f(n) = n^3 + h(n) \]

for some \(h(n) \in O(n^2) \).
Macro substitution

Convention: A set in a formula represents an anonymous function in the set.

Example: \(n^2 + O(n) = O(n^2) \)

means

for any \(f(n) \in O(n) \):

\[n^2 + f(n) = h(n) \]

for some \(h(n) \in O(n^2) \).
Ω-notation (lower bounds)

O-notation is an upper-bound notation. It makes no sense to say $f(n)$ is at least $O(n^2)$.
Ω-notation (lower bounds)

O-notation is an *upper-bound* notation. It makes no sense to say \(f(n) \) is at least \(O(n^2) \).

\[
\Omega(g(n)) = \{ f(n) : \text{there exist constants } c > 0, n_0 > 0 \text{ such that } 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \}
\]
Ω-notation (lower bounds)

O-notation is an *upper-bound* notation. It makes no sense to say $f(n)$ is at least $O(n^2)$.

$$
\Omega(g(n)) = \{ f(n) : \text{there exist constants } c > 0, n_0 > 0 \text{ such that } 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \}
$$

Example: $\sqrt{n} = \Omega(lg\ n) \quad (c = 1, n_0 = 16)$
Θ-notation (tight bounds)

\[\Theta(g(n)) = O(g(n)) \cap \Omega(g(n)) \]
Θ-notation (tight bounds)

\[\Theta(g(n)) = O(g(n)) \cap \Omega(g(n)) \]

Example: \[\frac{1}{2} n^2 - 2n = \Theta(n^2) \]
o-notation and ω-notation

O-notation and *Ω*-notation are like \(\leq \) and \(\geq \).

o-notation and *ω*-notation are like \(<\) and \(>\).

\[
o(g(n)) = \{ f(n) : \text{for any constant } c > 0, \\
\text{there is a constant } n_0 > 0 \\
\text{such that } 0 \leq f(n) < cg(n) \\
\text{for all } n \geq n_0 \}
\]

Example: \(2n^2 = o(n^3)\) \((n_0 = 2/c)\)
\[\omega(g(n)) = \{ f(n) : \text{for any constant } c > 0, \text{ there is a constant } n_0 > 0 \text{ such that } 0 \leq cg(n) < f(n) \text{ for all } n \geq n_0 \} \]

Example: \[\sqrt{n} = \omega(\lg n) \quad (n_0 = 1 + 1/c) \]
Solving recurrences

• The analysis of merge sort from *Lecture 1* required us to solve a recurrence.

• Recurrences are like solving integrals, differential equations, etc.
 - Learn a few tricks.

• *Lecture 3*: Applications of recurrences to divide-and-conquer algorithms.
Substitution method

The most general method:

1. **Guess** the form of the solution.
2. **Verify** by induction.
3. **Solve** for constants.
Substitution method

The most general method:
1. **Guess** the form of the solution.
2. **Verify** by induction.
3. **Solve** for constants.

Example: \(T(n) = 4T(n/2) + n \)
- [Assume that \(T(1) = \Theta(1) \).]
- Guess \(O(n^3) \). (Prove \(O \) and \(\Omega \) separately.)
- Assume that \(T(k) \leq ck^3 \) for \(k < n \).
- Prove \(T(n) \leq cn^3 \) by induction.
Example of substitution

\[T(n) = 4T(n/2) + n \]
\[\leq 4c(n/2)^3 + n \]
\[= (c/2)n^3 + n \]
\[= cn^3 - ((c/2)n^3 - n) \leftarrow \text{desired} - \text{residual} \]
\[\leq cn^3 \leftarrow \text{desired} \]

whenever \((c/2)n^3 - n \geq 0\), for example, if \(c \geq 2\) and \(n \geq 1\).
Example (continued)

- We must also handle the initial conditions, that is, ground the induction with base cases.

 - **Base:** \(T(n) = \Theta(1) \) for all \(n < n_0 \), where \(n_0 \) is a suitable constant.

 - For \(1 \leq n < n_0 \), we have “\(\Theta(1) \)” \(\leq cn^3 \), if we pick \(c \) big enough.
Example (continued)

- We must also handle the initial conditions, that is, ground the induction with base cases.

- **Base**: \(T(n) = \Theta(1) \) for all \(n < n_0 \), where \(n_0 \) is a suitable constant.

- For \(1 \leq n < n_0 \), we have “\(\Theta(1) \)” \(\leq cn^3 \), if we pick \(c \) big enough.

This bound is not tight!
A tighter upper bound?

We shall prove that $T(n) = O(n^2)$.
A tighter upper bound?

We shall prove that \(T(n) = O(n^2) \).

Assume that \(T(k) \leq ck^2 \) for \(k < n \):

\[
T(n) = 4T(n/2) + n \\
\leq 4c(n/2)^2 + n \\
= cn^2 + n \\
= O(n^2)
\]
A tighter upper bound?

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \leq ck^2$ for $k < n$:

$T(n) = 4T(n/2) + n$

$\leq 4c(n/2)^2 + n$

$= cn^2 + n$

$= O(n^2)$ **Wrong!** We must prove the I.H.
A tighter upper bound?

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \leq ck^2$ for $k < n$:

$T(n) = 4T(n/2) + n$

$\leq 4c(n/2)^2 + n$

$= cn^2 + n$

$= O(n^2)$ \textbf{Wrong!} We must prove the I.H.

$= cn^2 - (-n)$ \textbf{[desired – residual]}

$\leq cn^2$ for \textbf{no} choice of $c > 0$. Lose!
A tighter upper bound!

Idea: Strengthen the inductive hypothesis.
- *Subtract* a low-order term.

Inductive hypothesis: $T(k) \leq c_1 k^2 - c_2 k$ for $k < n$.
A tighter upper bound!

Idea: Strengthen the inductive hypothesis.
- **Subtract** a low-order term.

Inductive hypothesis: $T(k) \leq c_1 k^2 - c_2 k$ for $k < n$.

\[
T(n) = 4T(n/2) + n
\]
\[
= 4\left(c_1\left(\frac{n}{2}\right)^2 - c_2\left(\frac{n}{2}\right)\right) + n
\]
\[
= c_1 n^2 - 2c_2 n + n
\]
\[
= c_1 n^2 - c_2 n - (c_2 n - n)
\]
\[
\leq c_1 n^2 - c_2 n \quad \text{if } c_2 \geq 1.
\]
A tighter upper bound!

Idea: Strengthen the inductive hypothesis.
- *Subtract* a low-order term.

Inductive hypothesis: \(T(k) \leq c_1 k^2 - c_2 k \) for \(k < n \).

\[
T(n) = 4T(n/2) + n
\]
\[
= 4(c_1 (n/2)^2 - c_2 (n/2)) + n
\]
\[
= c_1 n^2 - 2c_2 n + n
\]
\[
= c_1 n^2 - c_2 n - (c_2 n - n)
\]
\[
\leq c_1 n^2 - c_2 n \quad \text{if } c_2 \geq 1.
\]

Pick \(c_1 \) big enough to handle the initial conditions.
Recursion-tree method

• A recursion tree models the costs (time) of a recursive execution of an algorithm.
• The recursion-tree method can be unreliable, just like any method that uses ellipses (…).
• The recursion-tree method promotes intuition, however.
• The recursion tree method is good for generating guesses for the substitution method.
Example of recursion tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:
Example of recursion tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

$$T(n)$$
Example of recursion tree

Solve \(T(n) = T(n/4) + T(n/2) + n^2 \):
Example of recursion tree

Solve \(T(n) = T(n/4) + T(n/2) + n^2: \)

\[
\begin{array}{c}
\text{n}^2 \\
\text{(n/4)}^2 \\
T(n/16) \\
\text{\hspace{2cm} (n/4)}^2 \\
T(n/16) \\
\text{\hspace{2cm} (n/2)}^2 \\
T(n/8) \\
T(n/8) \\
T(n/4)
\end{array}
\]
Example of recursion tree

Solve \(T(n) = T(n/4) + T(n/2) + n^2 : \)

\[
\begin{array}{c}
\text{n}^2 \\
(n/4)^2 \\
(n/16)^2 \\
\text{\ldots} \\
\Theta(1)
\end{array}
\]
Example of recursion tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

\[
\begin{array}{c}
\Theta(1) \\
/ \\
\vdots \\
(n/4)^2 \\
\vdots \\
(n/16)^2 \\
/ \\
(n/8)^2 \\
/ \\
(n/2)^2 \\
/ \\
n^2 \quad n^2
\end{array}
\]
Example of recursion tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:
Example of recursion tree

Solve \(T(n) = T(n/4) + T(n/2) + n^2 \):
Example of recursion tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

$$
\begin{align*}
\Theta(1) & \quad (n/4)^2 & \quad (n/2)^2 & \quad \frac{5}{16} n^2 \\
(n/16)^2 & \quad (n/8)^2 & \quad (n/8)^2 & \quad \frac{25}{256} n^2 \\
& \vdots & \vdots & \vdots \\
& \vdots & \vdots & \vdots \\
& n^2 & n^2 & n^2
\end{align*}
$$

Total $= n^2 \left(1 + \frac{5}{16} + \left(\frac{5}{16} \right)^2 + \left(\frac{5}{16} \right)^3 + \cdots \right)$

$= \Theta(n^2)$ geometric series
The master method

The master method applies to recurrences of the form

\[T(n) = a \, T(n/b) + f(n) , \]

where \(a \geq 1, \, b > 1, \) and \(f \) is asymptotically positive.
Three common cases

Compare $f(n)$ with $n^{\log_b a}$:

1. $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$.
 - $f(n)$ grows polynomially slower than $n^{\log_b a}$ (by an n^ε factor).

Solution: $T(n) = \Theta(n^{\log_b a})$.
Three common cases

Compare $f(n)$ with $n^{\log_b a}$:

1. $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$.
 - $f(n)$ grows polynomially slower than $n^{\log_b a}$ (by an n^ε factor).

 Solution: $T(n) = \Theta(n^{\log_b a})$.

2. $f(n) = \Theta(n^{\log_b a \log^{k} n})$ for some constant $k \geq 0$.
 - $f(n)$ and $n^{\log_b a}$ grow at similar rates.

 Solution: $T(n) = \Theta(n^{\log_b a \log^{k+1} n})$.
Three common cases (cont.)

Compare $f(n)$ with $n^{\log_b a}$:

3. $f(n) = \Omega(n^{\log_b a} + \varepsilon)$ for some constant $\varepsilon > 0$.

 - $f(n)$ grows polynomially faster than $n^{\log_b a}$ (by an n^ε factor),

 and $f(n)$ satisfies the regularity condition that $af(n/b) \leq cf(n)$ for some constant $c < 1$.

 Solution: $T(n) = \Theta(f(n))$.
Examples

Ex. \(T(n) = 4T(n/2) + n \)
\[a = 4, \; b = 2 \Rightarrow n^{\log_b a} = n^2; \; f(n) = n. \]
Case 1: \(f(n) = O(n^2 - \varepsilon) \) for \(\varepsilon = 1. \)
\[\therefore T(n) = \Theta(n^2). \]
Examples

Ex. \(T(n) = 4T(n/2) + n \)
\[
a = 4, \ b = 2 \Rightarrow n^{\log_b a} = n^2; \ f(n) = n.
\]
Case 1: \(f(n) = \mathcal{O}(n^{2-\varepsilon}) \) for \(\varepsilon = 1 \).
\[
\therefore \ T(n) = \Theta(n^2).
\]

Ex. \(T(n) = 4T(n/2) + n^2 \)
\[
a = 4, \ b = 2 \Rightarrow n^{\log_b a} = n^2; \ f(n) = n^2.
\]
Case 2: \(f(n) = \Theta(n^2 \lg^k n) \), that is, \(k = 0 \).
\[
\therefore \ T(n) = \Theta(n^2 \lg n).\)
Examples

Ex. \(T(n) = 4T(n/2) + n^3 \)

\[a = 4, \ b = 2 \Rightarrow n^{\log_b a} = n^2; \ f(n) = n^3. \]

Case 3: \(f(n) = \Omega(n^2 + \varepsilon) \) for \(\varepsilon = 1 \)

and \(4(n/2)^3 \leq cn^3 \) (reg. cond.) for \(c = 1/2. \)

\therefore \ T(n) = \Theta(n^3). \)
Examples

Ex. \(T(n) = 4T(n/2) + n^3 \)
\[a = 4, \ b = 2 \Rightarrow n^{\log_b a} = n^2; \ f(n) = n^3. \]

Case 3: \(f(n) = \Omega(n^2 + \varepsilon) \) for \(\varepsilon = 1 \)
and \(4(n/2)^3 \leq cn^3 \) (reg. cond.) for \(c = 1/2. \)

\[\therefore \ T(n) = \Theta(n^3). \]

Ex. \(T(n) = 4T(n/2) + n^2/\log n \)
\[a = 4, \ b = 2 \Rightarrow n^{\log_b a} = n^2; \ f(n) = n^2/\log n. \]

Master method does not apply. In particular, for every constant \(\varepsilon > 0, \) we have \(n^\varepsilon = \omega(\log n). \)
Idea of master theorem

Recursion tree:

```
               f(n)
              /   \
          a       \
         /     \
    f(n/b)  a   \
   /     \
f(n/b)  f(n/b)
/     \
T(1)```

\[ f(n) \quad a \quad f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \quad a \quad f(n/b^2) \quad f(n/b^2) \quad \cdots \quad f(n/b^2) \quad \cdots \]
Idea of master theorem

Recursion tree:

\[
\begin{array}{c}
T(1) \\
\vdots \\
f(n/b^2) & f(n/b^2) & \cdots & f(n/b^2) & \cdots & a^2 f(n/b^2) \\
\vdots \\
f(n/b) & f(n/b) & \cdots & f(n/b) & \cdots & af(n/b) \\
f(n) & a \\
f(n) & a \\
f(n/b) & f(n/b) & \cdots & f(n/b) \\
f(n) & a \\
f(n) & \cdots & a \\
\end{array}
\]
Idea of master theorem

Recursion tree:

\[ T(n) \]

\[ f(n) \]

\[ af(n/b) \]

\[ f(n/b^2) \]

\[ a^2 f(n/b^2) \]

\[ \vdots \]

\[ T(1) \]

\[ h = \log_b n \]
Idea of master theorem

**Recursion tree:**

\[ f(n) \quad f(n) \]
\[ \frac{f(n)}{a} \quad \frac{f(n)}{a} \quad \cdots \quad \frac{f(n)}{a} \quad a f\left(\frac{n}{b}\right) \]
\[ \frac{f\left(\frac{n}{b}\right)}{a} \quad \frac{f\left(\frac{n}{b}\right)}{a} \quad \cdots \quad \frac{f\left(\frac{n}{b}\right)}{a} \quad a^2 f\left(\frac{n}{b^2}\right) \]
\[ \vdots \]
\[ n^{\log_b a} T(1) \]

\[ h = \log_b n \]

\[ \text{#leaves} = a^h \]

\[ = a^{\log_b n} \]

\[ = n^{\log_b a} \]
Idea of master theorem

**Recursion tree:**

\[ f(n) \]

\[ f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \]

\[ af(n/b) \]

\[ a^2 f(n/b^2) \]

\[ \vdots \]

\[ T(1) \]

\[ n^{\log_b a} T(1) \]

\[ \Theta(n^{\log_b a}) \]

**CASE 1:** The weight increases geometrically from the root to the leaves. The leaves hold a constant fraction of the total weight.
Idea of master theorem

**Recursion tree:**

- $f(n)$
- $f(n/b)$
- $f(n/b^2)$

$h = \log_b n$

CASE 2: ($k = 0$) The weight is approximately the same on each of the $\log_b n$ levels.

- $T(1)$
- $n^{\log_b a} T(1)$

$\Theta(n^{\log_b a \lg n})$
Idea of master theorem

Recursion tree:

\[ f(n) \]

\[ f(n/b) \]

\[ f(n/b^2) \]

\[ f(n/b^n) \]

\[ T(1) \]

\[ n^\log_b a T(1) \]

\[ \Theta(f(n)) \]

**CASE 3**: The weight decreases geometrically from the root to the leaves. The root holds a constant fraction of the total weight.
Appendix: geometric series

\[ 1 + x + x^2 + \cdots + x^n = \frac{1 - x^{n+1}}{1 - x} \quad \text{for } x \neq 1 \]

\[ 1 + x + x^2 + \cdots = \frac{1}{1 - x} \quad \text{for } |x| < 1 \]