# Calendar

This calendar lists the lecture topics for the course, the instructor in charge of each lecture, and assignment due dates. Most lectures were delivered at MIT, and video-casted live to the National University of Singapore (NUS). Some lectures were delivered at NUS, and video-casted live to MIT. In rare circumstances, students watched a taped lecture.

LEC # TOPICS PRIMARY LECTURER ASSESSMENT
1 Overview J. Peraire
2 Finite Differences: Elliptic Problems J. Peraire
3 Finite Differences: Elliptic Problems J. Peraire
4 Finite Differences: Parabolic Problems B. C. Khoo
5 Finite Differences: Eigenvalue, 2D Problems J. Peraire
6 Solution Methods: Iterative Methods J. Peraire
7 Solution Methods: Multigrid Methods J. Peraire
8 Finite Differences: Hyperbolic Problems J. Peraire
9 Finite Differences: Hyperbolic Problems J. Peraire FD Assignment Due
10 Finite Volumes: Linear Problems J. Peraire
11 Finite Volumes: Conservation Laws J. Peraire
12 Finite Volumes: Nonlinear Problems J. Peraire
13 Finite Elements: Variational Formulation A. T. Patera
14 Finite Elements: Poisson 1D -- I A. T. Patera FV Assignment Due
15 Finite Elements: Poisson 1D -- II A. T. Patera
16 Finite Elements: Poisson 2D -- I A. T. Patera
17 Finite Elements: Poisson 2D -- II A. T. Patera
18 Finite Elements: General Elliptic Problems -- Overview A. T. Patera
19 Finite Elements: Parabolic Problems, Eigenvalue Problems A. T. Patera
20 Integral Equations: Derivation J. White
21 Integral Equations: Collocation and Galerkin Methods J. White
22 Integral Equations: Convergence Theory -- 2nd Kind J. White FE Assignment Due
23 Integral Equations: Quadrature and Cubature J. White
24 Integral Equations: Nystrom Methods J. White
25 Integral Equations: Convergence Theory -- 1st Kind J. White
26 Integral Equations: Fast Solvers J. White BI Assignment Due