20.181 Lecture 7

Contents

- 1 quick comment on upPass
 - 1.1 definitions
- 2 Revisit overall strategy
 - 2.1 Scoring functions
- 3 ML intro
- 4 Probability Refresher
- 5 ML in trees
- 6 Jukes-Cantor
- 7 Evolutionary Model

Quick comment on upPass

- not necessary to find the best tree (you won't be tested on it)
- but here's the correct way to do it (via Dr. Fredrik Ronquist's lecture notes on "Parsimony: Counting Changes," from FSU's Computational Evolutionary Biology course) (PDF)

Definitions

1. \(F_x \): the upPass set we want to get to
2. \(S_x \): the downpass set we got to
3. ancestor = a
4. parent = p, node we're looking at
5. children = q,r
Revisit overall strategy

- Although up until now we've always started with a tree of known topology, a lot of times you wouldn't know the tree topology beforehand

```plaintext
for all possible trees:
  compute score (tree)
return best tree
```

Scoring functions

1. max parsimony (fewest mutations)
2. generalized parsimony (Sankoff: weighted mutation costs)
3. Maximum Likelihood

ML intro

- examples of a ML estimator:
 1. for normally distributed random var X, \(X(\bar{x}) \), the mean of the data you observe, is a ML estimator of the mean of the distribution they were drawn from
 2. A best fit line thru data is a ML estimator.

Probability Refresher
total area of a box = 1

p(A) = 0.3, p(B) = 0.3

p(A,B) = 0.1

p(A|B) = 0.1 / (0.1 + 0.2) = 1/3 = p(A,B) / p(B)

p(B|A) = 0.1 / (0.1 + 0.2) = p(A,B) / p(A)

With a little manipulation we can derive Bayes' Rule:

\[p(A|B) = p(B|A) \cdot p(A) / p(B) \]

ML in trees

- We are looking for the best tree, given some data. What is the best tree T given the data D?

\[p(T|D) \] is what we want to maximize

Not obvious how we want to do that... use Bayes Law to rearrange into something we can intuitively understand

\[p(T|D) = p(D|T) \cdot p(T) / p(D) \]

- p(D) is a constant ... we don't have to worry about it
- What is p(T), the a priori probability of the tree?

Well, without looking at the data, do we have a way of saying any tree is more likely than another one if they don't have any data associated with them?

No... not really

- So what we're left maximizing is just \(p(D|T) \) and that sounds like a familiar concept!

NOTE: Tree now consists of topology AND distances We ask, what is the probability of *each* mutation occurring along a branch of a certain length? What is the probability that they ALL occurred, to give us the sequences we see today?
\[p(D|T) = p(x \rightarrow A|d_1) \cdot p(x \rightarrow y|d_2) \cdot p(y \rightarrow G|d_3) \cdot p(y \rightarrow G|d_4) \]

\[p(A \cup B) = p(A) + p(B) - p(A, B) \]

\[p(A \cap B) = p(A) \cdot p(B) \]

- We treat all of these mutations along the different branches as independent events (that's why you multiply the probabilities, because all the events have to happen independently.)

Jukes-Cantor

- based on a simple cost "matrix"

 probability of changing from one particular nucleotide to another particular nucleotide is 'a'

 probability of any nucleotide staying the same is '1-3a'

 if \(x == y \):
 [JC eqn you'll derive in the hw]

 if \(x != y \):
 [JC eqn you'll derive in the hw]

Evolutionary Model

gives us likelihood of \((D|T)\) (need branch lengths)

\[\text{downPass for ML} \]
\[\text{compute } L(p|q,r,d) \]

\(q, r = \text{likelihood of the two subtrees, d are the distances to them} \)