OPTICS AND Optical Instrumentation

Optical imaging is the manipulation of light to elucidate the structures of objects

History of Optics
Optical Instrumentation – light sources
Optical Instrumentation – detectors
Physical Optics
Optical Instrumentation – intermediate optics
A Historical Snap Shot of Optical Study

The study of light has a long history dating back to far antiquity. Optical microscope was first invited in the 16 century. However, we will focus on the beginning of 20th century where there are two class of thoughts about the physical properties of light.

Wave Nature of Light -- Huygen

Particle Nature of Light -- Newton

Figures from Wikipedia.
History of Optical Studies

The advent of quantum mechanics allows us to understand that light has both wave and particular properties.

Planck – quantization of black body radiation

Figure by MIT OCW.
History of Optical Studies

The advent of quantum mechanics allows us to understand that light has both wave and particular properties.

Bohr – Resolve wave-particle duality of light

Figure by MIT OCW.
A typical biomedical optics experiment

Light source → Intermediate Optics → Detector → Specimen
Physical Principle of High Sensitivity Optical Detectors

High sensitivity photodetectors today are mainly based on two physical processes:

(1) Photoelectric effect

(2) Photovoltaic effect

One can detect light by other processes such as heating. Power meter for laser light is called a thermopile and is based on heating by light – not very sensitive.
Photoelectric Effect

First observed by Becquerel in 1839, he observed current in conductive solutions as electrode is exposed to light.

Theoretically explained by Einstein: An electron knocks out of a material by a photon. It is one of the major evidence in the quantization of light.

\[h\nu = \phi + E_k \]

\(\phi \) is the work function characterizing the barrier in the material for electron Ejection. \(E_k \) is the kinetic energy of the ejected electron.

The kinetic energy depends only on the color (energy) of the photon but not light intensity (number of photons).

The number of electrons ejected is proportional to the number of photons.
Photovoltaic Effect

QM predicts that the electrons in a periodic lattice occupy energy bands that have gaps.

![Diagram showing the Photovoltaic Effect](image.png)

- **Insulator**
- **Semiconductor**
- **Conductor**

- **E_{gi}**
- **E_{gs}**

Conduction band

Valence band
Photovoltaic Effect II

Photovoltaic effect: Electron, hole generation in semi-conductor material by light
Signal and Noise in Optical Detection

Signal – the amount of light incident upon the detector per unit time

\bar{n} is the number of photons detected per unit time

Δt is the data acquisition time

$$< I >= \alpha \bar{n} q / \Delta t$$

q is the electron charge = 1.6×10^{-19} C

(1A = 1C/sec)

α is a gain factor of the detector

Noise – the “disturbance” on the signal level that hinders an accurate measurement
Signal-to-Noise Ratio and Noise Equivalent Power

Signal: \[S = \langle I \rangle^2 R \]

SNR: Signal power/Noise power = S/N

NEP: Signal power at which SNR = 1
Source of Noise in Optical Detectors

(1) Optical shot noise (N_s) –
 inherent noise in counting a finite number of photons per unit time

(2) Dark current noise (N_d) –
 thermally induced “firing” of the detector

(3) Johnson noise (N_J) –
 thermally induced current fluctuation in the load resistor

Since the noises are uncorrelated, the different sources of noise add in quadrature

$$N^2 \propto N_s^2 + N_d^2 + N_J^2$$
Optical Shot Noise

Photon arrival at detector are statistically independent, “uncorrelated”, events

What do we meant by uncorrelated?

\[
\text{Lim}_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} (n(t + \tau) - \bar{n})(n(t) - \bar{n})^* = \Delta n(t + \tau) \Delta n^*(t) \geq 0 \quad \tau \neq 0
\]

(* denotes complex conjugate)

Although the mean number of photons arriving per unit time, \(\lambda \), is constant on average, at each measurement time interval, the number of detected photons can vary.

The statistical fluctuation of these un-correlated random events are characterized by Poisson statistics.
Poisson Statistics

If the mean number of photon detected is \bar{n}, the probability of observing n photons in time interval t is:

$$P(n \mid \bar{n}) = e^{-\bar{n}} \frac{\bar{n}^n}{n!}$$

Mean:

$$\bar{n} = \frac{1}{M} \sum_{i}^{M} n_i$$

Variance:

$$\sigma_n^2 = \frac{1}{M} \sum_{i}^{M} (n_i - \bar{n})^2$$

$$\bar{n} = \sigma_n^2$$
Spectrum of Posson Noise

\[\Delta \tilde{I}(f) = \int_{-\infty}^{\infty} \Delta I(t)e^{-i2\pi ft} \, dt \quad \text{where} \quad \Delta I(t) = q \Delta f (n(t) - \bar{n}) \]

Assume photon number is Poisson distributed

Power spectral density: \[\tilde{P}(f) = R \Delta f \Delta \tilde{I}^* (f) \Delta \tilde{I} (f) \]

Noise power: \[\tilde{N}(f, \Delta f) = \tilde{P}(f) \Delta f \]

The power spectral density can be evaluated in a slightly round about way by considering the autocorrelation function:

Autocorrelation function: \[g(\tau) = R \Delta f \int_{-\infty}^{\infty} \Delta I(t + \tau) \Delta I(t)^* \, dt \]

Because the event of Poisson process is completely independent of each other

\[g(\tau) = R \sigma_I^2 \delta(\tau) / \Delta f \]
\(\delta(\tau) \) is the Dirac-Delta function with the following properties:

- It has the unit of frequency
- \(\delta(0) = \infty; \delta(t) = 0 \ for \ t \neq 0 \)
- \(\int \delta(t) dt = 1; \int f(t) \delta(t - \tau) dt = f(\tau) \)

From Poisson process: \(\sigma_I^2 = 2\alpha q \Delta f \ <I> \)

Factor of 2 account for positive and negative frequency bands

The autocorrelation function of Poisson noise is:

\(g(\tau) = 2R\alpha q <I> \delta(\tau) \)
Wiener-Khintchine Theorem:
\[\tilde{P}(f) = \int_{-\infty}^{\infty} g(\tau) e^{-i2\pi ft} d\tau \]

Let's why Wiener-Khintchine theorem is true:

\[
\int_{-\infty}^{\infty} g(\tau)e^{-i2\pi ft} d\tau = R\Delta f \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Delta I(t+\tau)\Delta I(t)dt \cdot e^{-i2\pi ft} d\tau
\]

\[
= R\Delta f \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Delta I(t+\tau)e^{-i2\pi ft} d\tau \Delta I(t)dt
\]

\[
= R\Delta f \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Delta I(\tau')e^{-i2\pi ft'} d\tau' \cdot e^{+i2\pi ft} \Delta I(t)dt
\]

\[
\tau' = t + \tau, \quad d\tau' = d\tau
\]

\[
= R\Delta f \int_{-\infty}^{\infty} \Delta I(\tau')e^{-i2\pi ft'} d\tau' \cdot \int_{-\infty}^{\infty} \Delta I(t)e^{+i2\pi ft} dt
\]

\[
= R\Delta f \Delta \tilde{I}(f) \Delta \tilde{I}(f)^* \]

Fourier transform of the autocorrelation function is the power spectral density
Poisson noise has a “white” spectrum.

Noise in a given spectral band:

\[\tilde{N}(f, \Delta f) = 2R\alpha q < I > \Delta f \]
Photon Shot Noise

The origin of the photon shot noise comes from the Poisson statistics of the incoming photons itself.

The shot noise power is:

\[\tilde{N}_s(f, \Delta f) = 2Raq < I > \Delta f \]

The signal power is:

\[S = < I >^2 R \]

\[SNR = \frac{< I >}{2\alpha q \Delta f} = \frac{\alpha q \bar{n} / \Delta t}{2\alpha q \Delta f} = \frac{2\alpha q \bar{n} \Delta f}{2\alpha q \Delta f} = \bar{n} \]

Used sampling theorem: \(1 / \Delta t = 2\Delta f \)

A detector is considered to be “ideal” if it is dominated by just shot noise.