Natural and synthetic biomineralization

Last time:
- enzymatic recognition of biomaterials
- Cytokine signaling from biomaterials

Today:
- introduction to biomineralization and biomimetic inorganic/organic composites
- Interfacial biomineralization

Reading:

Supplementary Reading:
-

ANNOUNCEMENTS:
REMINDER: NO CLASS NEXT TUESDAY
Complex macro- and microstructures of biological inorganic materials

Central tenets of biomineralization:

--organic molecules regulate nucleation, growth, morphology, and assembly of inorganic materials

--often employ molecular recognition at organic-inorganic interfaces to control syntheses

Radiolarian: Microskeleton of amorphous silica

Coccolith: CaCO$_3$ microskeleton

A. hexagona: Microskeleton of amorphous silica
HYDROXYAPATITE

Table removed for copyright reasons.
Paradigms in biomineralization

Two mechanisms of templating complex natural crystals:

1. **Interfacial Inorganic Growth**
 - Nucleation at/within organized boundaries
 - Kinetically crystal growth

2. **Epitaxial Inorganic (Crystal) Growth**
 - Growth from template biomolecules
 - Equilibrium crystal growth directed by template
Interfacial inorganic deposition
interfacial inorganic deposition

Utilization of 2-phase systems for compartmentalized deposition

4 main classes:

- Vesicular mineralization
- Microemulsion
- Micelle
- Dendrimer
Vesicular biomineralization

Images removed for copyright reasons.
Vesicular biomineralization

VESICLES PROVIDE CONTROL OF:

1. **CONTROL PH:** Ion solubility varies with pH
2. **CONTROL ION FLUX:** Control reactants
 - Ionic strength affects chemical potential of inorganics
 - Na⁺, K⁺
 - Ion transporters
3. **NUCLEATION KINETICS**
 - E.g., alkaline phosphatase: produces HPO₄²⁻
 - Carbonic anhydrase: removes H₂CO₃...
4. **CRYSTAL STRUCTURE AND MORPHOLOGY**
 - Proton pumps
Vesicular biomineralization

\[\text{SOLID} \quad M_{2+}X_{2-} \quad \Rightarrow \quad \text{IONS IN SOLUTION} \quad \nu_+M_{\nu+} + \nu_-X_{\nu-} \]

\[K_{sp} = \text{SOLUBILITY} = \left[[M^{2+}]^{\nu+} [X^{2-}]^{\nu-} \right] \]

\[S = \text{SUPERSATURATION} = \left[[M^{2+}]^{\nu+} [X^{2-}]^{\nu-} \right] / K_{sp} \]

\[S > 1 \quad \text{FAVORS SOLID FORMATION} \]

\[\downarrow \quad \text{VESICLE SURFACES ALLOW HETEROGENEOUS NUCLEATION AT LOW TOTAL ION CONCENTRATIONS} \]
Vesicular biomineralization

Images and text removed for copyright reasons.
Please see: Figure 1 and Figure 5.1 in Mann, S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. New York, NY: Oxford University Press, 2001.
Mechanisms for control of biomineral shape

Image removed due to copyright restrictions.

Spatial control of chemical deposition:

- Lipid bilayer
- Growing mineral
- Sequentially activated ion transporters

Growth direction
Example biological mineralization: diatom and radiolarian microskeletons

Mineralization nucleated at exterior surface of vesicles

Example biological mineralization: diatom and radiolarian microskeletons

Image removed due to copyright restrictions.

Image removed due to copyright restrictions.
Biological vesicular mineralization: human growth plate cartilage and tooth dentine

Hypertrophic chondrocytes/odontoblasts

Ion channels
Transport proteins
Acidic phospholipids

Ca$^{++}$
PO$_4^-$

CaHPO$_4$ nucleation
HA crystallization

MATRIX VESICLES
ECM

Lecture 14 Spring 2006
Synthetic vesicular mineralization

Vesicular mineralization

Image removed due to copyright restrictions.
Natural and synthetic vesicular biomineralization

Images removed due to copyright restrictions.
Microemulsion biomineralization

Aq CaHCO₃

Organic (oil) phase

SDS

Gas-evolving microemulsion biomineralization

Microemulsion mineralization

Chemistry of CaCO₃ deposition in vesicles:

\[
Ca^{++} (aq) + 2HCO_3^- (aq) \rightarrow CaCO_3(s) + CO_2(aq) + H_2O
\]

At equilibrium:

\[
K_{eq} = \frac{[H_2O][CO_2(aq)][CaCO_3(s)]}{[Ca^{++}(aq)][HCO_3(aq)]^2} = \text{constant}\]

At given T, P

![Diagram of gas-evolving microemulsion biomineralization](image-url)
Mineralizing bicontinuous microemulsions

Image removed due to copyright restrictions.
Coupling growth with self-assembly: micelle-directed inorganic crystallization

Coupling growth with self-assembly: micelle-directed inorganic crystallization

Image removed due to copyright reasons.
Please see: Figure 1 in Li, M., H. Schnableffer, and S. Mann.

Image removed due to copyright reasons.
Please see: Figure 2 in Li, M., H. Schnableffer, and S. Mann.
Organic templating of inorganic materials

Epitaxy of Inorganics
Optimization of inorganic biomaterial properties—nature does it better

Images removed due to copyright reasons.
Organic template control of inorganic nucleation

Nucleation of solid phase:

\[\Delta G_{\text{nucl}} = \Delta G_{\text{surface}} - \Delta G_{\text{bulk}} \]

\[= 4\pi r^2 \sigma - \frac{4}{3}\pi r^3 \frac{\Delta G_{\text{form}}}{V} \]

\(\sigma > 0\) surface energy of nucleating crystal

Modified by the presence of a nucleating surface

Fixed by chemistry of system

Free energy change to form solid from free ions

Molar volume

Lecture 14 Spring 2006
Organic template control of inorganic nucleation

Nucleation of solid phase:

1. **Homogeneous Nucleation**
2. **Surface (Heterogeneous) Nucleation**
Organic templates can select crystal structures

\[\Delta G_{\text{Nuc}}^{\text{B}} \]

- **Non-specific Surface Nucleation**
- **Structure-specific Selection of \(B \)**

1. \(A \) = No Surface
2. \(B \) = Templating Surface

Lower energy barrier for \(A \) means \(17 \) is kinetically favored
What are the organic templates?

Templates used by nature:

- PROTEINS → FORM HIGHER-ORDER STRUCTURES
- POLYSACCHARIDES
- LIPIDS → LESS SELECTIVE: 2D FLUIDS

Template functional groups correlate with structure to be nucleated:

- CARBOXYLATE MOIETIES:
- Asp, Glu
- Ca$^{2+} \rightarrow$ CaCO$_3$, HA

- H-BONDING MOIETIES:
- Ser, Thr

β-sheets
α-helices
Provide periodic repeat motifs
How are free energy barriers modified by organic templates?

Lattice matching for epitaxial nucleation of inorganic:
Charge distribution effects on templated nucleation

Table removed due to copyright reasons. Please see: Table 1 in Mann, et al. 1993.
Charge distribution effects on templated nucleation

Image removed due to copyright reasons.
Please see: Figure 4.20 in Mann, S.

Image removed due to copyright reasons.
Please see: Figure 4.23 in Mann, S.
2 mechanisms of surface-mediated nucleation:
Controlled nucleation and growth vs. preferential nucleation and growth

• Organic templates can preferentially nucleate inorganics without ordering or aligning the crystals

• Templated crystal growth requires both recognition of individual molecules and a larger underlying lattice to drive ordered nucleation

• Obtaining periodicity in organic templates:
Further Reading