9.03 Neural Basis of Learning and Memory: Lecture 2
Introduction to behavioral learning paradigms

Forms of behavioral learning

Instrumental conditioning
- *avoidance learning* - receive an unpleasant stimulus when the animal fails to make a response
 - 2-sided shock chamber
- *learned helplessness* - inescapable shock results in freezing
 - used in context dependent fear conditioning
- *reward training* - receive reinforcement when response is made
 - shaping
- *escape* - inevitable unpleasant stimulus continued unless response is made
- *punishment* - receive an unpleasant stimulus when a response is made

Classical conditioning
can be subdivided into *appetitive* conditioning when the unconditioned stimulus is rewarding, or *defensive* conditioning if the stimulus is aversive.
Examples of classical conditioning paradigms are
- eyeblink/nictitating membrane
- taste aversion
- GSR

Discrimination learning - positive and negative stimuli, must identify the positive stimulus

Serial learning
- lists
- sequences
- mazes

Spatial learning - positive and negative stimuli.
- radial maze

Biological constraints

Conditioning
- stimulus/response preferences - some stimuli are more easily associated with some responses
- easy to jump or bar press for food; hard to condition to grooming or scratching
- shock produced fear easily paired with visual/auditory stimuli; difficult to pair with taste
- illness easily associated with taste but not visual/auditory stimuli
- avoidance of shock easily paired with barrier jumping but not bar pressing.

Discrimination learning
- easy for dogs to associate voice tone but not location

Spatial memory
- rats are good at radial maze but pigeons are poor, yet pigeons are good in open field tasks.
- foraging patterns in rodents takes relative food quantity into consideration
- instinctive drift observed in highly trained animals
- imprinting
Ethology
- study of behavior in relation to the environment; innate behavior
- neuroethology - the study of the neural basis of innate behavior
 - echolocation in bats
 - electroreception in fish
 - sound localization in owls

Biological mechanisms which may underlie learning and memory
- activity dependent synaptic modification
- presynaptic enhancement of release - facilitation/sensitization
- presynaptic suppression of release - habituation
- postsynaptic enhancement of response
- alteration in membrane properties
- enhancement of action potential transmission reliability
- changes in neural excitability
- structural changes

Techniques for studying the role of neural systems in learning and memory

1) pharmacological manipulation
 - agonists/antagonists
 - systemic/local infusion

2) electrophysiology
 - field potentials
 - multiple unit activity
 - single units
 - ensemble activity

3) lesions
 - resection/transection
 - electrolytic - focal
 - neurotoxic - selective (kill cells leaving fibers intact)

4) imaging
 - PET - detection of small quantities of labelled compounds. radiolabelled glucose utilization
 - MRI - differences in molecular composition - blood oxygenation
 - optical dyes - electrical neural activity
 - optical imaging of intrinsic signal - blood oxygenation

5) anatomy
 - staining
 - tracing
 - electron microscopy (EM)
 - metabolic labeling

6) genetic manipulation
 - inducible (invertebrates)
 - selective