9.913 Pattern Recognition for Vision
Class VI – Density Estimation
Yuri Ivanov
Road Map

Density Estimation

Parametric
- Max Likelihood
- Bayesian

Non-parametric
- Histograms
- Kernel Methods
- K-NN Method

Semi-parametric
- Mixture Density
Generative vs. Discriminative

There are two schools of thought in Machine Learning:

1. Generative:
 - Estimate class models from data
 - Compute the discriminant function
 - Plug in your data – get the answer

2. Discriminative:
 - Estimate the discriminant from data
 - Plug in your data – get the answer

Last class
Density Estimation

Density Estimation is at the core of generative Pattern Recognition

\[
P(a < x < b) = \int_a^b p(x) \, dx
\]

mean: \(E[x] = \int x p(x) \, dx \)

covariance: \(E[(x - E[x])(x - E[x])^T] = \int \left[(x - E[x])(x - E[x])^T \right] p(x) \, dx \)

function mean: \(E[f(x)] = \int f(x) p(x) \, dx \)

conditional mean: \(E[y \mid x] = \int y p(y \mid x) \, dx \)
Refresher

Minimum expected risk:

\[R^* = \int \min_\omega [R(\alpha \mid x)] p(x) \, dx \]

… is based on conditional risk:

\[\omega_i = \arg \min_\omega R(\alpha \mid x) \]

… which is computed from the posterior:

\[R(\alpha \mid x) = L(\alpha \mid \omega) P(\omega \mid x) \]

… which depends on the likelihood:

\[P(\omega \mid x) = \frac{p(x \mid \omega)P(\omega)}{p(x)} \]
Setting

Data:

\[D = \{ D_i \}_{i=1}^{c} \]

Assume that \(D_j \) contains no information about \(\omega_i \), \(\forall i \neq j \)

NOTATIONALLY - we abandon the class label:

\[p(x | \omega_i) \quad \not\equiv \quad p(x) \]

Keep in mind: \[p(x | \omega_i) \neq p(x) \]

Goal:
model the probability density function \(p(x) \), given a finite number of data points, \(x_1, x_2, \ldots, x_N \), drawn from it.
Three Methods

1. Parametric
 - Good: small number of parameters
 - Bad: choice of the parametric form

2. Non-parametric
 - Good: data “dictates” the approximator
 - Bad: large number of parameters

3. Semi-parametric
 - Good: combine the best of both worlds
 - Bad: harder to design
 - Good again: design can be subject to optimization
Parametric Density Estimation

Estimate the density from a given functional family

Given: \[p(x | \theta) = f(x, \theta) \]
Find: \[\theta \]

Two methods of parameter estimation:

1. **Maximum Likelihood** method
 - Parameters are viewed as unknown but fixed values

2. **Bayesian** method
 - Parameters are random variables that have their distributions
Normal (Gaussian) Density Function

A common assumption - *Gaussian*

\[p(x \mid \theta) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp \left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right) \]

\(\theta = (\mu, \Sigma) \)

- Number of dimensions
- “Volume” of the covariance
- Squared Mahalanobis distance

\[\mu = E[x] \]
- \(d \) parameters

\[\Sigma = E\left[(x - \mu)^T (x - \mu)\right] \]
- \(d(d + 1)/2 \) parameters
Normal Density

\[\mu = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \]
\[\Sigma = \begin{bmatrix} 1 & 0 & .5 \\ 0 & 1 & .3 \\ .5 & .3 & 1 \end{bmatrix} \]

Constant density, \((x - \mu)^T \Sigma^{-1} (x - \mu) = C \) - quadratic surface

\[\Sigma \] - Positive semidefinite

\[\downarrow \]

ellipsoid

Principal axes: eigenvectors of \(\Sigma \)

Length: \(\sqrt{\lambda_i}, \quad \lambda \) - eigenvalues of \(\Sigma \)
Whitening Transform

Define:

\[\Lambda = \text{diag}\left(\text{eigval}\left(\Sigma\right)\right) \quad - \text{Scaling matrix} \]

\[\Phi = \text{eigvec}\left(\Sigma\right) \quad - \text{Rotation matrix} \]

Then:

\[W = \Lambda^{-1/2} \Phi^T \quad - \text{“Unscales” and “unrotates” the data} \]

For all:

\[x \sim N(0, \Sigma) \]

\[Wx \sim N(0, I) \]
Maximum Likelihood

Parameters are fixed but unknown.

\[D \equiv \{ x^1, x^2, \ldots, x^N \} \quad \text{- a data set, drawn from } p(x) \]

Notationally, we make density explicitly dependent on parameters:

\[p(x) \iff p(x \mid \theta) \]

Assuming that the data is drawn independently (i.i.d.):

\[
L(\theta) \equiv p(D \mid \theta) = \prod_{n=1}^{N} p(x^n \mid \theta) \quad \text{- a likelihood function}
\]

To find \(\theta \) Maximize \(L(\theta) \) w.r.t. parameters.
Maximum Likelihood

Maximizing \(L(\theta) \) is equivalent to maximizing log-likelihood function:

\[
l(\theta) \equiv \log L(\theta) = \log \prod_{n=1}^{N} p(x^n | \theta) = \sum_{n=1}^{N} \log p(x^n | \theta)
\]

To find \(\theta \) set the derivative to 0:

\[
\nabla_{\theta} l(\theta) = \sum_{n=1}^{N} \nabla_{\theta} \log p(x^n | \theta) = 0
\]

And solve for \(\theta \)
Quick Summary – ML Parameter Estimation

\[P(\omega_i | x) = P(\omega_i | x, \theta_i) = \frac{p(x | \omega_i, \theta_i) P(\omega_i | \theta_i)}{p(x | \theta_i)} \]

We pick that

\[\text{argmax}_\theta p(D | \theta) \]

\[\prod_{n=1}^{N} p(x^n | \theta) \]
Solving a Maximum Likelihood Problem

Fixed covariance:

$$p(D | \theta)$$

$$\log p(D | \theta)$$

some candidates

\[\hat{\theta} \]
Maximum Likelihood Example

In d-dimensions:

$$\nabla_\theta l(\theta) = \sum_n \nabla_\theta \left\{ -\frac{d}{2} \log [2\pi] - \frac{1}{2} \log [|\Sigma|] - \frac{1}{2} (x^n - \mu)^T \Sigma^{-1} (x^n - \mu) \right\}$$

Solving for the mean:

$$\nabla_\mu l(\theta) = -\frac{1}{2} \sum_n \Sigma^{-1} (x^n - \hat{\mu}) = 0 \implies$$

$$\hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x^n$$ - arithmetic average of samples
Maximum Likelihood Example (cont.)

\[\nabla_\theta l(\theta) = \sum_n \nabla_\theta \left\{ -\frac{d}{2} \log [2\pi] - \frac{1}{2} \log [|\Sigma|] - \frac{1}{2} (x^n - \mu)^T \Sigma^{-1} (x^n - \mu) \right\} \]

Solving for the covariance:

For symmetric \(M \):
\[\frac{d |M|}{dM} = |M|M^{-1} \quad \text{and} \quad \frac{d (a^T M^{-1} b)}{dM} = M^{-1} ab^T M^{-1} \quad \implies \]

\[\nabla_\Sigma l(\theta) = -\frac{1}{2} \sum_n \left\{ \hat{\Sigma}^{-1} - \hat{\Sigma}^{-1} (x^n - \hat{\mu})(x^n - \hat{\mu})^T \hat{\Sigma}^{-1} \right\} = 0 \quad \implies \]

\[
\hat{\Sigma} = \frac{1}{N} \sum_{n=1}^{N} (x^n - \hat{\mu})(x^n - \hat{\mu})^T
\]

biased - arithmetic average of indiv. covariances

Fall 2004
Pattern Recognition for Vision
What if data comes one sample at a time?

\[
\hat{\mu}_N = \frac{1}{N} \sum_{n=1}^{N} x^n = \frac{1}{N} \left[x^N + \sum_{n=1}^{N-1} x^n \right]
\]

\[
= \frac{1}{N} \left[x^N + (N-1) \hat{\mu}_{N-1} \right] = \hat{\mu}_{N-1} + \frac{1}{N} \left[x^N - \hat{\mu}_{N-1} \right]
\]

This estimate “stiffens” with more data (as it should).

One idea – fix the fraction. Then the estimate can track a non-stationary process.
Recursive ML

Fix the update rate and retrace the steps:

\[v_N = v_{N-1} + \gamma \left[x^N - v_{N-1} \right] = (1 - \gamma) v_{N-1} + \gamma x^N \]

\[= (1 - \gamma)^2 v_{N-2} + (1 - \gamma) \gamma x^{N-1} + \gamma x^N \]

\[= (1 - \gamma)^M v_{N-M} + \sum_{k=1}^{M} (1 - \gamma)^{M-k} \gamma x^k \]

Recency weights
Simple Example

Several images from a static camera:

How much noise is in it?

\[x = \text{vec} (I_t - I_{t-1}) \]
\[\mu = 0 \]
\[\sigma = 1.2 \]

Now we can set a threshold that will statistically distinguish pixel noise from an object.
Problems with ML

We are given two estimates:

\[\mu_1, \Sigma_1 \quad \mu_2, \Sigma_2 \]

Which one do we believe?

ML gives a single solution, regardless of uncertainty.
Density Estimation

Parametric
- Max Likelihood
- Bayesian

Non-parametric
- Histograms
- Kernel Methods
- K-NN Method

Semi-parametric
- Mixture Density
Bayesian Parameter Estimation

In classification our goal so far has been to estimate $P(\omega \mid x)$.

Let’s make the dependency on the data explicit:

$$P(\omega_i \mid x, D) = \frac{p(x \mid \omega_i, D)P(\omega_i \mid D)}{p(x \mid D)}$$

- $P(\omega_i \mid D)$ - this is easy to compute
- $P(x \mid D)$ - this is easy to compute by marginalization

What about $p(x \mid \omega_i, D)$?
Bayesian Parameter Estimation

This is a supervised problem so far:

\[D = \{ D_1, D_2, \ldots, D_N \} \]

\[
p(x | \omega_i, D) = p\left(x | \omega_i, \{ D_j \}_{j=1}^{N} \right)
\]

\[
= p\left(x | \omega_i, D_i, \{ D_j \}_{j \neq i} \right) = p\left(x | \omega_i, D_i \right)
\]

\[
P(\omega_i | x, D) = \frac{p(x | \omega_i, D_i) P(\omega_i | D)}{p(x | D)}
\]
Bayesian Parameter Estimation

We will assume that we can obtain “labeled” data, so again:

Notationally: \[p(x \mid \omega_i, D_i) \not\iff p(x \mid D) \]

Now our problem is to compute density for \(x \) given the data \(D \).

We assume the form of \(p(x) \) – the source density for \(D \):

\[p(x) \iff p(x \mid \theta) \]

… and treat \(\theta \) as a random variable
Bayesian Parameter Estimation

Instead of choosing a value for a parameter, we use them all:

\[p(x \mid D) = \int p(x, \theta \mid D) d\theta = \int p(x \mid \theta, D) p(\theta \mid D) d\theta \]

Data predicts the new sample
x is independent of D given \(\theta \)

\[= \int p(x \mid \theta) p(\theta \mid D) d\theta \]

We chose the form of this
What is this?

Average densities \(p(x \mid \theta) \) for ALL possible values of \(\theta \) weighted by its posterior probability
Computing the posterior probability for \(\theta \):

Using Bayes rule:

\[
p(\theta \mid D) = \frac{p(D \mid \theta) p(\theta)}{\int p(D \mid \theta) p(\theta) d\theta}
\]

Using independence:

\[
p(D \mid \theta) = \prod_{n=1}^{N} p(x^n \mid \theta)
\]

Bayesian method does not commit to a particular value of \(\theta \), but uses the entire distribution.
Quick Summary – Bayesian Parameter Estimation

\[P(\omega_i \mid x) = P(\omega_i \mid x, D) = \frac{p(x \mid \omega_i, D_i) P(\omega_i \mid D)}{p(x \mid D)} \]

Easy

Hard

\[\int p(x \mid \theta) p(\theta \mid D) d\theta \]

we pick that

\[p(D \mid \theta) p(\theta) \]

we “know” this*, **

\[\prod_{n=1}^{N} p(x^n \mid \theta) \]

Non-informative prior – doesn’t introduce bias

Conjugate prior – causes \(p(\theta \mid D) \) have the same functional form as \(p(D \mid \theta) \)
Bayesian Parameter Estimation

For $\theta = \mu$:

Parameter prior

Parameter posterior

ML solution

Bayesian solution

posterior

weighted likelihoods

$\int p(x | \mu) p(\mu | D) \, d\mu$
Bayesian Parameter Estimation - Example

First let’s deal with the parameter:

Likelihood: \(p(x \mid \mu) = \mathcal{N}(\mu, \sigma^2) \) fixed

Parameter prior: \(p(\mu) = \mathcal{N}(\mu_0, \sigma_0^2) \)

Need to find: \(p(\mu \mid D) \)

Bayes rule again:

\[
p_N(\mu \mid D) = \frac{p(D \mid \mu)p(\mu)}{p(D)} = \alpha \left[\prod_{n=1}^{N} p(x^n \mid \mu) \right] \mathcal{N}(\mu_0, \sigma_0^2) = \mathcal{N}(\mu_N, \sigma_N)
\]

\(N \)-sample parameter posterior

This is a Gaussian

Need these
Bayesian Parameter Estimation - Example

So, the posterior is a Gaussian

$$ p_N(\mu | D) = \mathcal{N}(\mu_N, \sigma_N) $$

After some algebra and identifying the terms:

$$ \frac{1}{\sigma_N^2} = \frac{1}{\sigma^2} N + \frac{1}{\sigma_0^2} \quad - \text{when Gaussians multiply – precisions add} $$

... and

$$ \mu_N = \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \bar{x} + \frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0 $$

With increasing N covariance of the posterior decreases and the prior becomes unimportant.
Bayesian Parameter Estimation - Example

Now the integral:

\[
p(x \mid D) = \int p(x \mid \theta)p(\theta \mid D)d\theta
\]

\[
= \int N(\mu, \sigma^2)N(\mu_N, \sigma_N^2)d\mu = N(\mu_N, \sigma^2 + \sigma_N^2)
\]

You can show that it is also a Gaussian

Any guesses about why Gaussian is such a common assumption?
Recursive Bayes

For N-point likelihood:

$$p(D^N | \theta) = \prod_{n=1}^{N} p(x^n | \theta)$$

$$= p(x^N | \theta) \prod_{n=1}^{N-1} p(x^n | \theta) = p(x^N | \theta) p(D^{N-1} | \theta)$$

From this the recursive relation for the posterior:

$$p(\theta | D^N) = \frac{p(x^N | \theta) p(D^{N-1} | \theta) p(\theta)}{p(D^N)}$$

$$= \frac{p(x^N | \theta) p(\theta | D^{N-1})}{\int p(x^N | \theta) p(\theta | D^{N-1}) d\theta}$$
Recursive Bayes (cont.)

Again:

\[
p(\theta | D^N) = \frac{p(x^N | \theta) p(\theta | D^{N-1})}{\int p(x^N | \theta) p(\theta | D^{N-1}) \, d\theta}
\]

- 1-point update.

Setting \(N=1\):

\[
\frac{1}{\sigma_n^2} = \frac{1}{\sigma^2} + \frac{1}{\sigma_{n-1}^2}
\]

\[
\mu_n = \frac{\sigma_{n-1}^2}{\sigma_{n-1}^2 + \sigma^2} x + \frac{\sigma^2}{\sigma_{n-1}^2 + \sigma^2} \mu_{n-1}
\]
Recursive Bayes (cont.)

\[p(\theta | D^N) \]

\[p(x | \theta) \]

\(N = 10 \)
\(N = 2 \)
\(N = 1 \)
Problems with Bayesian Method

1. Integration is difficult
2. Analytic solutions are only available for restricted class of densities
3. Technicality: If the true $p(x|\theta)$ is NOT what we assume it is, the prior probability of any parameter setting is 0!
4. Integration is difficult
5. Did I mention that the integration is hard?
Relation between Bayesian and ML Inference

\[p(\theta \mid D) \propto p(D \mid \theta) \cdot p(\theta) \]

peaks at \(\hat{\theta}_{ML} \)

\[
= \left[\prod_{n} p(x^n \mid \theta) \right] \cdot p(\theta) = L(\theta) \cdot p(\theta)
\]

If the peak is sharp and \(p(\theta) \) is flat, then:

\[
p(x \mid D) = \int p(x \mid \theta) \cdot p(\theta \mid D) d\theta
\]

\[
= \int p(x \mid \hat{\theta}) \cdot p(\theta \mid D) d\theta = p(x \mid \hat{\theta}) \int p(\theta \mid D) d\theta = p(x \mid \hat{\theta})
\]

As \(N \to \infty \), \(p(x \mid D) \leftrightarrow p(x \mid \hat{\theta}) \)
Non-Parametric Methods for Density Estimation

Non-parametric methods do not assume any particular form for $p(x)$

1. Histograms
2. Kernel Methods
3. K-NN method
Density Estimation

Parametric
- Max Likelihood
- Bayesian

Non-parametric
- Histograms
- Kernel Methods
- K-NN Method

Semi-parametric
- Mixture Density
Histograms

\(\hat{P}(x) \) is a discrete approximation of \(p(x) \)

- Count a number of times that \(x \) lands in the \(i \)-th bin

\[
H(i) = \sum_{j=1}^{N} I(x \in R_i), \quad \forall i = 1, 2, ..., M
\]

- Normalize

\[
\hat{P}(i) = \frac{H(i)}{\sum_{j=1}^{M} H(j)}
\]
Histograms

How many bins?

- $M = 3$
 - "Oversmoothing"

- $M = 20$
 - "Overfitting"

- $M = 10$

- $M = 50$

Fall 2004

Pattern Recognition for Vision
Histograms

Good:
• Once it is constructed, the data can be discarded
• Quick and intuitive

Bad:
• Very sensitive to number of bins, M
• Estimated density is not smooth
• Poor generalization in higher dimensions
Aside: Curse of dimensionality (Bellman, ‘61):

- Imagine we build a histogram of a 1-d feature (say, *Hue*)
 - 10 bins
 - 1 bin = 10% of the input space
 - need at least 10 points to populate every bin

- We add another feature (say, *Saturation*)
 - 10 bins again
 - 1 bin = 1% of the input space
 - we need at least 100 points to populate every bin

- We add another feature (say, *Value*)
 - 10 bins again
 - 1 bin = 0.1% of the input space
 - we need at least 1000 points to populate every bin

\[
N = b^d
\]

- number of points grows exponentially
Aside: Curse Continues

Volume of a cube in R^d with side l:

$$V_l = l^d$$

Volume of a cube with side $l-\varepsilon$:

$$V_\varepsilon = (l - \varepsilon)^d$$

Volume of the ε-shell:

$$\Delta = V_l - V_\varepsilon = l^d - (l - \varepsilon)^d$$

Ratio of the volume of the ε-shell to the volume of the cube:

$$\frac{\Delta}{V_l} = \frac{l^d - (l - \varepsilon)^d}{l^d} = 1 - \left(1 - \frac{\varepsilon}{l}\right)^d \rightarrow 1 \text{ as } d \rightarrow \infty \text{ !!!!!!}$$
Aside: Lessons of the curse

In generative models:
- Use as much data as you can get your hands on
- Reduce dimensionality as much as you can get away with

<End of Digression>
General Reasoning

By definition:

\[P(x \in R) = P = \int_R p(x')\,dx' \]

If we have \(N \) i.i.d. points drawn from \(p(x) \):

\[P(|x \in R| = k) = \frac{N!}{k!(N-k)!} P^k (1-P)^{N-k} = B(N, P) \]

- Num. of unique splits \(K \) vs. \((N-K)\)
- Prob that \(k \) of particular \(x \)-es are in \(R \)
- Prob that the rest are not

\(B(N, P) \) is a binomial distribution of \(k \)
General Reasoning (cont.)

Mean and variance of $B(N, P)$:

Mean: $\mu = E[k] = NP \implies P = E[k / N]$

Variance: $\sigma^2 = E[(k - \mu)^2] = NP(1 - P)$

$\implies E\left[\left(\frac{k}{N} - P\right)^2\right] = \left(\frac{\sigma}{N}\right)^2 = \frac{P(1 - P)}{N}$

That is:
- $E[k/N]$ is a good estimate of P
- P is distributed around this estimate with vanishing variance

So:

$P \approx k / N$
So:

\[P = \frac{k}{N} \]

On the other hand, under mild assumptions:

\[P = \int_{R} p(x') dx' \approx p(x)V \]

Volume of \(R \)
(not \(p(x) \))

… which leads to:

\[p(x) \approx \frac{k}{NV} \]
Now, given N data points – how do we really estimate $p(x)$?

$$p(x) \approx \frac{k}{NV}$$

- Fix k and vary V until it encloses k points
- Fix V and count how many points (k) it encloses

K-Nearest Neighbors (KNN)

Kernel methods
Kernel Methods of Density Estimation

We choose V by specifying a hypercube with a side h:

$$V = h^d$$

Mathematically:

$$H(y) = \begin{cases}
1 & |y_j| < 1/2 \quad j = 1, \ldots, d \\
0 & \text{otherwise}
\end{cases}$$

kernel function:

$$H(y) \geq 0, \forall y \quad \text{and} \quad \int H(y)dy = 1$$
Parzen Windows

Then

\[H \left(\left(x - x^n \right) / h \right) \] - a hypercube with side \(h \) centered at \(x^n \)

\(H \) can help count the points in a volume \(V \) around any \(x \):

\[k(x) = \sum_{n=1}^{N} H \left(\frac{x - x^n}{h} \right) \]

\[x_1 \]
\[x_2 \]

\(h \)-neighborhood of \(x \)

No contribution to the count at \(x \)
Rectangular Kernel

So the number of points in h-neighborhood of x:

$$k(x) = \sum_{n=1}^{N} H \left(\frac{x - x^n}{h} \right)$$

… is easily converted to the density estimate:

$$\tilde{p}(x) = k(x) \frac{1}{NV} = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{h^d} H \left(\frac{x - x^n}{h} \right)$$

Subtle point:

$$\int \left[\frac{1}{N} \sum_{n=1}^{N} K \left(x, x^n \right) \right] dx = \frac{1}{N} \sum_{n=1}^{N} \left[\int K \left(x, x^n \right) dx \right] = 1$$

$$\Rightarrow \int \tilde{p}(x) dx = 1$$
Example

Source

$h=1$

$h=2$

$h=4$
Smoothed Window Functions

The problem is as in histograms – it is discontinuous

We can choose a smoother function, s.t.:

\[\tilde{p}(x) \geq 0, \quad \forall x \quad \text{and} \quad \int \tilde{p}(x)\,dx = 1 \]

Ensured by kernel conditions

Eg: <loud cheer> a (spherical) Gaussian:

\[K(x, x^n) = \frac{1}{(\sqrt{2\pi h})^d} \exp \left(-\frac{\|x - x^n\|^2}{2h^2} \right) \]

… so:

\[\tilde{p}(x) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{(\sqrt{2\pi h})^d} \exp \left(-\frac{\|x - x^n\|^2}{2h^2} \right) \]
Example

Source

- $h=0.6$
- $h=1.0$
- $h=1.3$
Some Insight

Interesting to look at expectation of the estimate with respect to all possible datasets:

\[
E \left[\hat{p}(x) \right] = E \left[\frac{1}{N} \sum_{n=1}^{N} K(x, x^n) \right] = E \left[K(x, x') \right]
\]

\[
= \int K(x - x') p(x') dx'
\] - convolution with true density

That is:

\[
\hat{p}(x) = p(x) \quad \text{if} \quad K(x, x') = \delta(x, x')
\]

But not for the finite data set!
Conditions for Convergence

How small can we make h for a given N?

\[\lim_{N \to \infty} h_N^d = 0 \quad - \text{It should go to 0} \]

\[\lim_{N \to \infty} N h_N^d = \infty \quad - \text{But slower than } 1/N \]

Based on the similar analysis of variance of estimates

Eg:

\[h_N^d = h_1^d / \sqrt{N} \]

\[h_N^d = h_1^d / \log(N) \]

Note that the choice of h_1^d is still up to us.
Problems With Kernel Estimation

• Need to choose the width parameter, h

 • Can be chosen empirically
 • Can be adaptive, eg. $h_j = h d_{jk}$ – where d_{jk} the distance from x_j to k-th nearest neighbor

• Need to store all data to represent the density

• Leads to Mixture Density Estimation
K-Nearest Neighbors

Recall that:

\[\tilde{p}(x) = \frac{k}{NV} \]

Now we fix \(k \) (typically \(k = \sqrt{N} \)) and expand \(V \) to contain \(k \) points.

This is not a true density!

Eg.: choose \(N=1, k=1 \). Then:

\[\tilde{p}(x) = \frac{1}{1 \cdot \|x - x_1\|} \quad \text{Oops!} \]

BUT it is useful for a number of theoretical and practical reasons.
K-NN Classification Rule

Let’s try classification with K-NN density estimate

Data: \[N \] - total points
\[N_j \] - points in class \(\omega_j \)

Need to find the class label for a query, \(x \)

Expand a sphere from \(x \) to include \(K \) points

\[K \] - number of neighbors of \(x \)
\[K_j \] - points of class \(\omega_j \) among \(K \)
KNN Classification

Then class priors are given by: \[p(\omega_j) = \frac{N_j}{N} \]

We can estimate conditional and marginal densities around any \(x \):
\[
p(x \mid \omega_j) = \frac{K_j}{N_j N V} \quad p(x) = \frac{K}{N V}
\]

By Bayes rule:
\[
p(\omega_j \mid x) = \frac{K_j}{N_j V} \frac{N_j}{N} \frac{N V}{K} = \frac{K_j}{K}
\]

Then for \textit{minimum error rate} classification:
\[
C = \arg \max_j K_j
\]
KNN Classification

Important theoretical result:

In the extreme case, $K=1$, it can be shown that:

\[
N\text{-sample error rate}
\]

for \(P = \lim_{N \to \infty} P_N(error) \)

\[
P^* \leq P \leq P^* \left(2 - \frac{c}{c-1} P^* \right)
\]

That is, using just a single neighbor rule, the error rate is at most twice the Bayes error!!!
Problems with Non-parametric Methods

- Memory: need to store all data points
- Computation: need to compute distances to all data points every time
- Parameter choice: need to choose the smoothing parameter
Density Estimation

Parametric
- Max Likelihood
- Bayesian

Non-parametric
- Histograms
- Kernel Methods
- K-NN Method

Semi-parametric
- Mixture Density
Mixture Density Model

\[p(x) = \sum_{j=1}^{M} p(x \mid j)P(j) \]

Uses MUCH less “kernels” than kernel methods
Kernels are parametric densities, subject to estimation
Example

$$p(x) = \sum_{j=1}^{M} p(x | j) P(j)$$
Using ML principle, the objective function is the *log-likelihood*:

\[
l(\theta) \equiv \log \prod_{n=1}^{N} p(x^n) = \sum_{n=1}^{N} \log \left\{ \sum_{j=1}^{M} p(x^n | j) P(j) \right\}
\]

Differentiate w.r.t. parameters:

\[
\nabla_{\theta_j} l(\theta) = \sum_{n=1}^{N} \frac{\partial}{\partial \theta_j} \log \left\{ \sum_{k=1}^{M} p(x^n | k) P(k) \right\}
\]

\[
= \sum_{n=1}^{N} \frac{1}{\sum_{k=1}^{M} p(x^n | k) P(k)} \frac{\partial}{\partial \theta_j} p(x^n | j) P(j)
\]
Mixture Density

Again let’s assume that \(p(x|\omega) \) is a Gaussian

We need to estimate \(M \) priors, and \(M \) sets of means and covariances

\[
\frac{\partial l(\theta)}{\partial \mu_j} = \sum_{n=1}^{N} P(j|x^n) \left[\Sigma_j^{-1}(x^n - \hat{\mu}_j) \right]
\]

Setting it to 0 and solving for \(\mu_j \):

\[
\hat{\mu}_j = \frac{\sum_{n=1}^{N} P(j|x^n)x^n}{\sum_{n=1}^{N} P(j|x^n)}
\]

- convex sum of all data
Mixture Density

Similarly for the covariances:

\[\frac{\partial l(\theta)}{\partial \sigma^2_j} = \sum_{n=1}^{N} P(j|\ x^n) \left[\hat{S}_j^{-1} - \hat{S}_j^{-1} (x^n - \hat{\mu}_j)(x^n - \hat{\mu}_j)^T \hat{S}_j^{-1} \right] \]

Setting it to 0 and solving for \(\Sigma_i \):

\[\hat{S}_j = \frac{\sum_{n=1}^{N} P(j|\ x^n)(x^n - \hat{\mu}_j)(x^n - \hat{\mu}_j)^T}{\sum_{n=1}^{N} P(j|\ x^n)} \]
Mixture Density

A little harder for $P(j)$ – optimization is subject to constraints:

$$\sum_{j=1}^{M} P(j) = 1 \quad \text{and} \quad P(j) \geq 0, \forall j$$

Here is a trick to enforce the constraints:

$$P(j) = \frac{\exp(\gamma_j)}{\sum_{k=1}^{M} \exp(\gamma_k)}$$

$$\frac{\partial P(i)}{\partial \gamma_j} = \delta(i - j)P(j) - P(i)P(j)$$
Mixture Density

Using the chain rule:

\[
\nabla_{\gamma_j} l(\theta) = \sum_{k=1}^{M} \frac{\partial l(\theta)}{\partial P(k)} \frac{\partial P(k)}{\partial \gamma_j} = \sum_{k=1}^{M} \sum_{n=1}^{N} \frac{p(x^n | k)}{P(x)} \left(\delta_{jk} P(j) - P(j)P(k) \right)
\]

\[
= \sum_{n=1}^{N} \left\{ \frac{p(x^n | j)}{P(x)} P(j) - \sum_{k=1}^{M} \frac{p(x^n | k)}{P(x)} P(j)P(k) \right\}
\]

\[
= \sum_{n=1}^{N} \left\{ P(j | x^n) - P(j) \sum_{k=1}^{M} p(k | x^n) \right\} = \sum_{n=1}^{N} \left\{ P(j | x^n) - P(j) \right\} = 0
\]

The last expression gives the value at the extremum:

\[
P(j) = \frac{1}{N} \sum_{n=1}^{N} P(j | x^n)
\]
Mixture Density

What’s the problem?

\[P(j) = \frac{1}{N} \sum_{n=1}^{N} P(j \mid x^n) \]

\[\hat{\mu}_j = \frac{\sum_{n=1}^{N} P(j \mid x^n)x^n}{\sum_{n=1}^{N} P(j \mid x^n)} \]

\[\hat{S}_j = \frac{\sum_{n=1}^{N} P(j \mid x^n)(x^n - \hat{\mu}_j)(x^n - \hat{\mu}_j)^T}{\sum_{n=1}^{N} P(j \mid x^n)} \]

We can’t compute these directly!

Solution – EM algorithm. We will study it in Clustering.