Recap

- Homotopy and Bifurcation
Recap

\[
f(x) = \begin{pmatrix} (x_1 - 1)^2 + x_2^2 - 1 \\ (x_1 + 1)^2 + x_2^2 - 1 \end{pmatrix} = 0
\]

\[
J(x) = \begin{pmatrix} 2(x_1 - 1) & 2x_2 \\ 2(x_1 + 1) & 2x_2 \end{pmatrix}
\]
Optimization

• Problems of the sort:

\[
\min_{x \in D} f(x) \quad \text{arg min}_{x \in D} f(x)
\]

• \(f(x) \): objective function, cost function, energy
 • “metric to compare alternatives”

• \(x \): “design alternatives”

• \(D \): feasible set

• Maximization of \(f(x) \) is just minimization of \(-f(x) \)
Optimization

\[f(x_1, x_2) \]
Optimization

• Goal: find \(x^* \in D : f(x^*) < f(x) \quad \forall x \in D \)

• \(x^* \) is not necessarily unique. There could be more than one \(x^* \) in \(D \).

• Convexity: a function is convex if the line connecting any two points above the function is also above the function:

\[
\begin{align*}
x^* &\in D : f(x^*) < f(x) \quad \forall x \in D \\
\text{convex} &\quad \text{non-convex}
\end{align*}
\]

• Convex functions have a single, global minimum

• Most algorithms are characterized in terms of their ability to find the global minimum of convex functions.

• Non-convex function may have global or local minima
Optimization

• Examples:
 • Find the value of x that minimizes
 \[f(x) = x^2 + 2x + 1 \]
 • Find the value of $x \in [0, 1]$ that minimizes
 \[f(x) = x^2 + 2x + 1 \]
Optimization

• Examples: linear programs
 - Premium and regular ice cream are sold for $5/gallon and $3.5/gallon respectively.
 - Premium ice cream is 30% air by volume while regular ice cream is 50% air by volume.
 - We can produce X gallons of premium and Y gallons of regular ice cream all at the same cost, $1/gallon.
 - What fraction of milk processed should go toward premium versus regular ice cream?
Optimization

• $x^* \in D$ is a local minimum of
 • if $\exists \epsilon > 0 : f(x^*) < f(x), \quad \forall x \in D \cap B_\epsilon(x^*)$

• Global minima are also local minima

• If $f(x)$ is convex in D then a local minimum is the global minimum in D.

• If D is a closed set, the problem of finding the minimum is called constrained optimization.

• If D is an open set: \mathbb{R}^N, the problem of finding the minimum is called unconstrained optimization
Unconstrained Optimization

- Optimality criteria:
 - How do I check for local minima?
 - Assume \(f(x) \) is twice differentiable, then:

\[
f(x + d) = f(x) + g(x)^T d + \frac{1}{2} d^T H(x) d + \ldots
\]

- where: \(g_i(x) = \frac{\partial f}{\partial x_i} \) \(H_{ij}(x) = \frac{\partial^2 f}{\partial x_i \partial x_j} \)
- As \(\|d\|_p \to 0 \)

\[
f(x + d) - f(x) = g^T d
\]
- If \(g^T d > 0 \), then \(f(x + d) > f(x) \)
- But, replace \(d \) with \(-d \), and the converse is true
- Therefore, I have a critical point when: \(g = \nabla f(x) = 0 \)
Unconstrained Optimization

- Solving unconstrained optimization problems is the same as solving the system of nonlinear equations:
 \[g = \nabla f(x) = 0 \]

- Except, we want to ensure that we only find the roots associated with local minima in \(f(x) \)

- If the eigenvalues of the Hessian are positive, we can be sure that \(f(x) \) is a minimum. Why?

- For a minimum, the eigenvalues must be non-negative

- How do we craft an algorithm that only finds minima?
Unconstrained Optimization

- Examples:
 - Calculate the gradient. Where is the critical point?
 - Calculate the Hessian. Is the critical point a minimum?

\[f(x) = x_1^2 + x_2^2 \]

\[f(x) = x_1^2 - x_2^2 \]

\[f(x) = x_1^4 + x_2^4 \]
Unconstrained Optimization

• Method of steepest decent:
 • Solve the equation: $g(x) = \nabla f(x) = 0$, iteratively by taking steps in a direction that decreases $f(x)$

$$x_{i+1} = x_i + \alpha_i d_i$$

• with $\alpha_i > 0$ and $g(x_i)^T d_i < 0$

• This ensures that d_i is a descent direction:

$$f(x_i + \alpha_i d_i) = f(x_i) + \alpha_i g(x_i)^T d_i + \ldots$$

• Which descent direction should I choose?
 • One option: maximize $-g(x_i)^T d_i$
 • C-S inequality: $-g(x_i)^T d_i \leq \|g(x_i)\|_2 \|d_i\|_2$
 • Solution: let $d_i = -g(x_i)$
Unconstrained Optimization

- Method of steepest decent:
 - Example: \(f(x) = x_1^2 + x_2^2 \)
 - Contours for the function:

\[
x_{i+1} = x_i - \alpha_i g(x_i)
\]

Is there a best value of \(\alpha_i \) to use with this function?
Unconstrained Optimization

• Method of steepest decent:
 • Direction of steepest descent: \(d_i = -g(x_i) \)
 • Iterative solution: \(x_{i+1} = x_i - \alpha_i g(x_i) \)
 • For small, positive values of \(\alpha_i \), the iterates continue to reduce \(f(x) \) until \(g(x) = 0 \)
 • The iterative method converges to local minima and potentially saddle points. Need to check the Hessian still to be sure of minima.

• How do I choose values for \(\alpha_i \)?
 • Ideally, we pick the \(\alpha_i \) that leads to the smallest value of \(f(x_{i+1}) \), but this is its own optimization.
 • We can approximate the solution with a line search like in damped Newton-Raphson.
Unconstrained Optimization

- Method of steepest decent:
 - Example: $f(x) = x_1^2 + 10x_2^2$
 - Contours for the function:

Draw the path given by small α_i

- The choice of α_i is critical!
- Too small and the convergence is slow
Unconstrained Optimization

- Method of steepest decent:
 - Example: \(f(x) = x_1^2 + 10x_2^2 \)
 - Contours for the function:

\[
\begin{align*}
\text{Draw the path given by larger } & \alpha_i \\
\text{The choice of } & \alpha_i \text{ is critical!} \\
\text{Too big and convergence is erratic}
\end{align*}
\]
Unconstrained Optimization

- Method of steepest decent:
 - Example: $f(x) = x_1^2 + 10x_2^2$
 - Contours for the function:

\[x_{i+1} = x_i - \alpha_i \nabla f(x_i) \]
Unconstrained Optimization

- Method of steepest descent:
 - Estimating an optimal α_i:
 \[
 x_{i+1} = x_i - \alpha_i g(x_i)
 \]
 - Use a Taylor expansion:
 \[
 f(x_{i+1}) = f(x_i) - \alpha_i g(x_i)^T g(x_i) + \frac{1}{2} \alpha_i^2 g(x_i)^T H(x_i) g(x_i) + \ldots
 \]
 - This is quadratic in α_i, so find the minimum:
 \[
 \alpha_i = \frac{g(x_i)^T g(x_i)}{g(x_i)^T H(x_i) g(x_i)}
 \]
 - This can serve as a good starting point for a backtracking line search.
Unconstrained Optimization

- Method of steepest decent:
 - Example: $f(x) = x_1^2 + 10x_2^2$
 - Contours for the function:

\[x_{i+1} = x_i - \alpha_i g(x_i) \]

quadratic approximation:
Unconstrained Optimization

- Method of steepest decent:
 - Example: \(\log f(x) = x_1^2 + 10x_2^2 \)
 - Contours for the function:

\[
\alpha_i = \frac{g(x_i)^T g(x_i)}{g(x_i)^T H(x_i) g(x_i)}
\]

\[
x_{i+1} = x_i - \alpha_i g(x_i)
\]
10.34 Numerical Methods Applied to Chemical Engineering
Fall 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.