Objectives of Chapter 5

1. to understand the framework of the Fundamental Equation – including the geometric and mathematical relationships among derived properties (\(U, S, H, A, \) and \(G \))
2. to describe methods of derivative manipulation that are useful for computing changes in derived property values using measurable, experimentally accessible properties like \(T, P, V, N, x_i, \) and \(\rho \).
3. to introduce the use of Legendre Transformations as a way of alternating the Fundamental Equation without losing information content

Starting with the combined 1\(^{st}\) and 2\(^{nd}\) Laws and Euler’s theorem we can generate the Fundamental Equation:

Recall for the combined 1\(^{st}\) and 2\(^{nd}\) Laws:

- Reversible, quasi-static
- Only \(PdV \) work
- Simple, open system (no KE, PE effects)
- For an \(n \) component system

\[
\begin{align*}
 dU &= T dS - P dV + \sum_{i=1}^{n} (H - TS) dN_i \\
 dU &= T dS - P dV + \sum_{i=1}^{n} \mu_i dN_i
\end{align*}
\]

and Euler’s Theorem:

- Applies to all smoothly-varying homogeneous functions \(f \):

\[
f(a, b, ..., x, y, ...)\]

where \(a, b, ... \) intensive variables are homogenous to zero order in mass and \(x, y \), extensive variables are homogeneous to the 1\(^{st}\) degree in mass or moles \((N) \).

- \(df \) is an exact differential (not path dependent) and can be integrated directly

\[
\text{if } Y = ky \text{ and } X = kx \text{ then}
\]
\[f(a, b, \ldots, X, Y, \ldots) = k f(a, b, \ldots, x, y, \ldots) \]

and

\[x \left(\frac{\partial f}{\partial x} \right)_{a, b, \ldots, x, \ldots} + y \left(\frac{\partial f}{\partial y} \right)_{a, b, \ldots, x, \ldots} + \ldots = (1) f(a, b, \ldots x, y, \ldots) \]

Fundamental Equation:

- Can be obtained via Euler integration of combined 1\(^{st}\) and 2\(^{nd}\) Laws

- Expressed in Energy \((U)\) or Entropy \((S)\) representation

\[
U = f_u [S, V, N_1, N_2, \ldots, N_n] = TS - PV + \sum_{i=1}^{n} \mu_i N_i
\]

or

\[
S = f_s [U, V, N_1, N_2, \ldots, N_n] = \frac{U}{T} + \frac{P}{T} V - \sum_{i=1}^{n} \frac{\mu_i}{T} N_i
\]

The following section summarizes a number of useful techniques for manipulating thermodynamic derivative relationships

Consider a general function of \(n + 2\) variables

\[
F(x, y, z_1, \ldots, z_{n+2})
\]

where \(x \equiv z_1, y \equiv z_2\). Then expanding via the rules of multivariable calculus:

\[
dF = \sum_{i=1}^{n+2} \left(\frac{\partial F}{\partial z_i} \right) dz_i
\]

Now consider a process occurring at constant \(F\) with \(z_3, \ldots, z_{n+2}\) all held constant. Then

\[
dF = 0 = \left(\frac{\partial F}{\partial x} \right)_{y, z_3, \ldots} dx + \left(\frac{\partial F}{\partial y} \right)_{x, z_4, \ldots} dy
\]
Rearranging, we get:

Triple product “x-y-z-(1) rule” for $F(x,y)$:

\[
(\partial F / \partial x)_y (\partial x / \partial y)_F (\partial y / \partial F)_x = -1
\]

example:

\[
(\partial H / \partial T)_P (\partial T / \partial P)_H (\partial P / \partial H)_T = -1
\]

Add another variable to $F(x,y)$:

\[
(\partial F / \partial y)_x = \left(\frac{\partial F / \partial \phi}{\partial y / \partial \phi} \right)_x
\]

example: $F(x,y) = S(P,H)$ and $\phi = T$ then

\[
\left(\frac{\partial S}{\partial H} \right)_P = \left(\frac{\partial S / \partial T}{\partial H / \partial T} \right)_P = \frac{C_P / T}{C_p} = 1 / T
\]

Derivative inversion for $F(x,y)$:

\[
(\partial F / \partial y)_x = 1 / (\partial y / \partial F)_x
\]

example:

\[
(\partial T / \partial S)_P = 1 / (\partial S / \partial T)_P = T / C_P
\]

Maxwell’s reciprocity theorem:

Applies to all homogeneous functions, e.g. $F(x,y,..)$

\[
\left[\frac{\partial(\partial F / \partial x)_{y,..}}{dy} \right]_{x,..} = \left[\frac{\partial(\partial F / \partial y)_{x,..}}{\partial x} \right]_{y,..} \text{ or } F_{xy} = F_{yx}
\]

example:

\[
dU_\Sigma = TdS - PdV + \sum_{i=1}^{n} \mu_i dN_i
\]

\[
(\partial T / \partial V)_{S,N} = U_{SV} = U_{SV} = -(\partial P / \partial S)_{V,N} = U_{VS} = U_{VS}
\]
Legendre Transforms:

\[
\begin{align*}
(x_i, \xi_i) \\
(S, T) \\
(V_i, -P) \\
(N_i, \mu_i) \\
(x_i, F_i) \\
(\rho, \sigma)
\end{align*}
\]

Conjugate coordinates

(extensive, intensive)

<table>
<thead>
<tr>
<th>General relationship</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y^{(0)} = f[x_1, \ldots, x_m]) (basis function)</td>
<td>(U = f[S, V, N_1, \ldots, N_n])</td>
</tr>
<tr>
<td>(y^{(k)} = y^{(0)} - \sum_{i=1}^{k} \xi_i x_i) ((k^{th}) transform)</td>
<td>(y^{(1)} = A = U - T S)</td>
</tr>
<tr>
<td>or by changing variable order to (U = f(V, S, N_1, \ldots, N_n)),</td>
<td>(y^{(1)} = H = U + PV)</td>
</tr>
</tbody>
</table>
General relationship

\[
d y^{(k)} = - \sum_{i=1}^{k} x_i d\xi_i + \sum_{i=k+1}^{m} \xi_i dx_i
\]

\[
d y^{(l)} \equiv dA = -SdT - PdV + \sum_{i=1}^{n} \mu_i dN_i
\]

or

\[
d y^{(l)} \equiv dH = TdS + VdP + \sum_{i=1}^{n} \mu_i dN_i
\]

\[
y^{(m)} = y^{(0)} - \sum_{i=1}^{m} \xi_i x_i = 0
\]

\[
y^{(n+2)} = 0 \quad \text{(total transform with } m = n + 2)\]

\[
d y^{(m)} = - \sum_{i=1}^{m} x_i d\xi_i = 0
\]

\[
d y^{(n+2)} = -SdT + VdP - \sum_{i=1}^{n} N_i d\mu_i = 0
\]

(Gibbs-Duhem Equation)

Examples

Relationships among Partial Derivatives of Legendre Transforms

\[
y_{ij}^{(k)} = y_{ji}^{(k)} = \frac{\partial^2 y^{(k)}}{\partial x_i \partial x_j}
\]

\(\text{(Maxwell relation)}\)

\[
\xi_i \equiv y_i^{(0)} = \left(\frac{\partial y^{(0)}}{\partial x_i} \right)_{x_i=0}
\]

\[
y_{ii}^{(0)} = \frac{\partial^2 y^{(0)}}{\partial x_i \partial x_i} \quad y_{11}^{(0)} = \frac{\partial^2 y^{(0)}}{\partial x_1^2}
\]

\[
y_i^{(1)} = \begin{cases} -x_i & i = 1 \\ \xi_i & i > 1 \end{cases}
\]

[NB: \(\xi_i = y_i^{(0)} \) as well for \(i > 1 \)]
Reordering and Use of Tables 5.3-5.5

Table 5.3 – 2nd & 3rd order derivatives of \([y^{(1)}_{ij} \text{ and } y^{(1)}_{ijk}] \) in terms of \(y^{(0)}_{ii} \), etc

Table 5.4 – Relations between 2nd order derivatives of \(j^{th} \) Legendre transform \(y^{(j)}_{ik} \) and the basis function \(y^{(0)}_{ik} \)

Table 5.5 – Relationships among 2nd order derivatives of \(j^{th} \) Legendre transform \(y^{(j)}_{ik} \) to \((j-q)\) transform \(y^{(j-q)}_{ik} \)