Second Hour Exam- Answer Key

Write your name below. Do not open the exam until the start of the exam is announced. The exam is closed notes and closed book.

1. Read each part of each problem carefully and thoroughly.
2. Read all parts of each problem. MANY OF THE LATTER PARTS OF A PROBLEM CAN BE SOLVED WITHOUT HAVING SOLVED EARLIER PARTS. However, if you need a numerical result that you were not successful in obtaining for the computation of a latter part, make a physically reasonable approximation for that quantity (and indicate it as such) and use it to solve the latter parts.
3. A problem that requests you to “calculate” implies that several calculational steps may be necessary for the problem’s solution. You must show these steps clearly and indicate all values, including physical constants used to obtain your quantitative result. Significant figure usage must be correct.
4. If you don’t understand what the problem is requesting, raise your hand and a proctor will come to your desk.
5. Physical constants, formulas and a periodic table are given on the last page. You may detach this page once the exam has started.

Suggested time

1. 14 minutes (30 points) _____________
2. 8 minutes (12 points) _____________
3. 8 minutes (20 points) _____________
4. 12 minutes (27 points) _____________
5. 8 minutes (11 points) _____________

Total (100 points) _____________

Name ________________________________
1. (30 points) **Lewis structures and VSEPR theory**

Draw the **most stable** Lewis structure for each of the following molecules, subject to the information given for each. Be sure to **include the lone pairs** and, if applicable, draw any **resonance forms** that are equal in energy. **Indicate any nonzero formal charges.**

(a) (i) (6 points) Draw the Lewis structure of POCl$_3$. Include any relevant resonance forms, and indicate any nonzero formal charges.

32 valence electrons
40 electrons needed to fill valence shells
8 bonding electrons (after valence shell expansion, 10 bonding electrons and 22 lone pair electrons
24 lone-pair electrons (eliminating all formal charges)

![POCl3 Lewis structure](image)

(ii) (2 points) Name the geometry around the phosphorus atom.

tetrahedral

(b) (8 points) Draw the Lewis structure of (NCNH)$_{-1}$ (atom order as indicated). Include any relevant resonance forms, and indicate any nonzero formal charges.

16 valence electrons
26 electrons needed to fill valence shells
10 bonding electrons
6 lone-pair electrons

![NCNH Lewis structure](image)

Formal charges are circled on atoms where the FC is not zero.
(c) (i) (6 points) Draw the Lewis structure of \((\text{SO}_3)^2\). Include any relevant resonance forms, and indicate any nonzero formal charges.

26 valence electrons
32 electrons needed to fill valence shells
6 bonding electrons \(\rightarrow\) after valence shell expansion, 8 bonding electrons and 18 lone pair electrons
20 lone-pair electrons \(\rightarrow\) (eliminating all formal charges)

(iii) (2 points) Circle the one value that best describes the O-S-O bond angle in \((\text{SO}_3)^2\).

\(< 90^\circ; \ 90^\circ; \ > 90^\circ; \ < 109.5^\circ; \ 109.5^\circ; \ > 109.5^\circ; \ < 120^\circ; \ 120^\circ; \ > 120^\circ; \ < 180^\circ; \ 180^\circ; \ > 180^\circ\)

(iv) (2 points) Is \((\text{SO}_3)^2\) a polar or a non-polar molecule?

polar

(ii) (2 points) Name the geometry around the sulfur atom.

trigonal pyramidal
2. (12 points) Ionic bonds

KF has an ionic bond with a bond length of 0.217 nm. Calculate the ΔE, in kJ/mol, for the formation of a KF bond from the neutral atoms K and F. For this calculation, assume that the potassium and fluorine ions are point charges. IE and EA information for K and F is provided in the table below.

<table>
<thead>
<tr>
<th>Ionization energy (kJ/mol)</th>
<th>Electron affinity (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>potassium (K)</td>
<td>418</td>
</tr>
<tr>
<td>fluorine (F)</td>
<td>1680</td>
</tr>
</tbody>
</table>

Overall: $\text{K} + \text{F} \rightarrow \text{KF}$

First calculate the ΔE for the formation of an ionic bond from the two ions: $\text{K}^+ + \text{F}^- \rightarrow \text{KF}$

$$U(r) = \frac{z_1z_2e^2}{4\pi\varepsilon_0r} = \frac{(-1)(1)(1.602 \times 10^{-19} \text{ C})^2}{4\pi(8.854 \times 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{ m}^{-1})(0.217 \times 10^{-9} \text{ m})}$$

$$U(r) = -1.063 \times 10^{-18} \text{ J}$$

$$U(r) = -1.063 \times 10^{-18} \text{ J} \times \frac{\text{kJ}}{1000 \text{ J}} \times \frac{6.022 \times 10^{23}}{\text{mol}} = -640.1 \text{ kJ/mol}$$

$$U(r) = -640.1 \text{ kJ/mol}$$

$$\Delta E_{\text{total}} = \text{IE}_K - \text{EA}_F + U(r)$$

$$\text{K} \rightarrow \text{K}^+ + e^- \equiv \text{IE}_K$$

$$\text{418 kJ/mol}$$

$$\text{F} + e^- \rightarrow \text{F}^- \equiv -\text{EA}_F$$

$$\text{-328 kJ/mol}$$

$$\text{K}^+ + \text{F}^- \rightarrow \text{KF} \equiv U(r)$$

$$\text{-640.1 kJ/mol}$$

$$\text{K} + \text{F} \rightarrow \text{KF}$$

$$\text{-550.1 kJ/mol}$$

$$\text{-550 kJ/mol} \quad \text{or} \quad -5.50 \times 10^{-2} \text{ kJ/mol}$$
3. (20 points) **Hybridization**

(a) (12 points) The structure of the amino acid histidine is provided below. For the indicated bonds, a-c, write the symmetry of each bond, and give the hybrid or atomic orbitals (with their principal quantum numbers) that overlap to form each of the bonds. Where appropriate, include the x, y, or z designations with the orbitals.

N-C bond a: \(\sigma(N2sp^2, C2sp^2)\)
\(\pi(N2p_y, C2p_y)\) or \(\pi(N2p_z, C2p_z)\)

N-C bond b: \(\sigma(N2sp^3, C2sp^3)\)

O-H bond c: \(\sigma(O2sp^3, H1s)\)

(b) (8 points)

(i) For the molecule below, indicate the symmetry in the C-Cl bond (labeled a), and give the hybrid or atomic orbitals (with their principal quantum numbers) that overlap to form the bond. If appropriate, include the x, y, or z designations with the orbitals.

C-Cl bond a: \(\sigma(C2sp^2, Cl3p_z)\)

(ii) Do the chlorine atoms in the \(F_2C=CCl_2\) molecule above lie in the same plane as the fluorine atoms or in a **perpendicular plane** to the fluorine atoms? Briefly explain your answer (with words or a picture).

perpendicular plane. The p-orbitals in the two sp\(^2\)-hybridized carbon atoms are perpendicular to each other (p\(_y\) and p\(_z\)), meaning the F-C-F bonds and the Cl-C-Cl bonds also lie in perpendicular planes.
4. (27 points) **Molecular orbital theory**

(a) (21 points)

(i) (9 points) Draw an energy correlation diagram for the molecular orbitals of the valence electrons in CN. Label the atomic and molecular orbitals, including the x, y and z designations where appropriate. The relative ordering of the energies of the states must be correct. **Use the full space available** to spread out your energy levels so that the labels for the orbitals fit easily.

(ii) (2 points) Of the CN molecular orbitals occupied by valence electrons, name the orbitals that have a nodal plane along the internuclear (bond) axis.

\[\pi_{2p_x} \text{ and } \pi_{2p_y} \]
(iii) (4 points) Determine the bond order of the cyanide molecule, CN, and the cyanide ion, CN\(^{-1}\).

\[\frac{1}{2} (# \text{ of bonding electrons} - # \text{ of anti-bonding electrons}) \]

BO of CN: \[\frac{1}{2}(7-2) = 2.5 \]

BO of CN\(^{-1}\): \[\frac{1}{2}(8-2) = 3 \]

(iv) (4 points) Below is an energy diagram of the CN covalent bond in a neutral CN molecule. On the same graph, plot the energy vs. internuclear distance, \(r \), of the CN covalent bond in a CN\(^{-1}\) ion. Indicate the equilibrium bond distances with arrows. The relative values of the bond distances and energies must be correct, but no numbers are needed.

Note: this question is graded based on your answer to part (iii), since it depends on bond order.

(v) (2 points) Which of the following are radical species: CN, CN\(^{-1}\), both, or neither?

CN is the only radical species.

(b) (6 points)
Write the valence electron configuration for O\(_2\).

(12 valence electrons)

\[(\sigma 2s)^2(\sigma 2s^*)^2(\sigma 2p_z)^2(\pi 2p_x)^2(\pi 2p_y)^2(\pi 2p_x^*)^1(\pi 2p_y^*)^1 \]
5. (11 points) **Thermochemistry**

(a) (7 points) Consider the reaction below for the conversion nitrogen dioxide to nitric oxide and O\(_2\).

\[
2\text{NO}_2(g) \rightarrow 2\text{NO}(g) + \text{O}_2(g)
\]

<table>
<thead>
<tr>
<th>(\Delta H^\circ) (kJ/mol)</th>
<th>NO(_2)(g)</th>
<th>NO(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+33.18</td>
<td>+90.25</td>
</tr>
</tbody>
</table>

Calculate \(\Delta H^\circ\) (per mol of O\(_2\) formed) for the reaction at 298 K.

\[
\Delta H^\circ = \Sigma \Delta H^\circ(\text{products}) - \Sigma \Delta H^\circ(\text{reactants})
\]

\[
\Delta H^\circ = [2\Delta H^\circ(\text{NO}) + \Delta H^\circ(\text{O}_2)] - [2\Delta H^\circ(\text{NO}_2)]
\]

\[
\Delta H^\circ = [2(90.25 \text{ kJ/mol}) + (0)] - [2(33.18 \text{ kJ/mol})]
\]

\[
\Delta H^\circ = 114.1 \text{ kJ} \quad \text{or} \quad 114.14 \text{ kJ} \quad (\text{also ok to have kJ/mol, since the questions says per mol of O}_2)
\]

(b) (4 points) Using the table of mean bond enthalpies provided, predict the bond enthalpy (in kJ/mol) for the CO bond marked with an arrow in the molecule below.

\[
\text{Note: the C-O bond is a } 1\frac{1}{2} \text{ bond (not a single bond) due to resonance.}
\]

\[
360 \text{ kJ/mol} < \text{bond enthalpy} < 743 \text{ kJ/mol}
\]

It is also fine if a student calculated a number, as long as it is above 400 and less than 700 kJ/mol (ie. 552 kJ/mol).

<table>
<thead>
<tr>
<th>Bond</th>
<th>Mean Bond Enthalpy (in kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-H</td>
<td>412</td>
</tr>
<tr>
<td>C-C</td>
<td>348</td>
</tr>
<tr>
<td>C=C</td>
<td>612</td>
</tr>
<tr>
<td>C-O</td>
<td>360</td>
</tr>
<tr>
<td>C=O</td>
<td>743</td>
</tr>
</tbody>
</table>
\[c = 2.99792 \times 10^8 \text{ m/s} \]
\[h = 6.62608 \times 10^{-34} \text{ J s} \]
\[\text{Na} = 6.02214 \times 10^{23} \text{ mol}^{-1} \]
\[e = 9.10939 \times 10^{-31} \text{ kg} \]
\[e = 1.60218 \times 10^{-19} \text{ C} \]
\[\Delta G = \Delta H - T \Delta S \]

Electronegativity

\[\text{Electronegativity} = \frac{\text{IE} + \text{EA}}{2} \]

\[e^q \text{V} = 8.8542 \times 10^{-12} \text{ C}^2/(\text{J/m}) \]

\[e^q = 1.60218 \times 10^{-19} \text{ C} \]

\[\text{me} = 9.10939 \times 10^{-31} \text{ kg} \]

Noble Gases

<table>
<thead>
<tr>
<th>1</th>
<th>H</th>
<th>1.008</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Li</td>
<td>6.941</td>
</tr>
<tr>
<td>11</td>
<td>Na</td>
<td>22.990</td>
</tr>
</tbody>
</table>

Transition Elements

19	K	39.098	Ca	40.08	Sc	44.960	Ti	47.88	V	50.942	Cr	51.996	Mn	54.938	Fe	55.847	Co	58.923	Ni	58.69	Cu	63.546	Zn	65.38		
37	Rb	85.468	Sr	87.62	Y	88.906	Zr	91.224	Nb	92.906	Mo	95.94	Tc	98.0 (98)	Ru	101.07	Rh	102.906	Pd	106.42	Ag	107.868	Cd	112.41		
58	Cs	132.905	Ba	137.33	La	138.905	Hf	178.49	Ta	180.948	W	183.85	Re	186.92	Os	190.2	Ir	192.22	Pt	195.08	Au	196.966	Hg	200.59		
87	Fr	226.025	Ra	227.028	Th	232.038	Pa	231.036	U	238.029	Np	237.048	Pu	244.0	Am	243.0	Cm	247.0	Bk	251.0	Cf	252.0	Es	252.0	Fm	257.0

Inner Transition Metals

| 58 | Ce | 140.12 | Pr | 140.908 | Nd | 144.24 | Sm | 150.36 | Eu | 151.96 | Gd | 157.25 | Tb | 158.925 | Dy | 162.50 | Ho | 164.930 | Er | 167.26 | Tm | 168.934 | Yb | 173.04 |
| 90 | Th | 232.038 | Pa | 231.036 | U | 238.029 | Np | 237.048 | Pu | 244.0 | Am | 243.0 | Cm | 247.0 | Bk | 251.0 | Cf | 252.0 | Es | 252.0 | Fm | 257.0 | Md | 258.0 |

\[N_a = 6.02214 \times 10^{23} \text{ mol}^{-1} \]

\[h = 6.62608 \times 10^{-34} \text{ J s} \]

\[c = 2.99792 \times 10^8 \text{ m/s} \]