5.74, Problem Set #0
Spring 2009
Not graded

These are some problems to make sure that you are up to speed on the basics of solving numerical problems.

1. **Numerically solving for eigenstates and eigenvalues of an arbitrary 1D potential.**
 Obtain the energy eigenvalues \(E_n \) and wavefunctions \(\psi_n(r) \) for the anharmonic Morse potential below. (Values of the parameters correspond to HF). Tabulate \(E_n \) for \(n = 0 \) to \(5 \), and plot the corresponding \(\psi_n(r) \).

 \[
 V = D_e \left[1 - e^{-\alpha x} \right]^2
 \]

 Equilibrium bond energy: \(D_e = 6.091 \times 10^{-19} \) J

 Equilibrium bond length: \(r_0 = 9.109 \times 10^{-11} \) m \(x = r - r_0 \)

 Force constant: \(k = 1.039 \times 10^3 \) J m\(^{-2}\) \(\alpha = \sqrt{k/2D_e} \)

 (If you aren’t familiar with these problems, study the notes and worksheets on the Discrete Value Representation).

2. **Resonant driving of two level system.** If two states \(k \) and \(l \) are coupled with a sinusoidal potential, the differential equations that describe their probability amplitude are

 \[
 \dot{b}_k = \frac{-i}{2\hbar} b_k V_{kl} e^{i(\omega_{kl} - \omega)t}
 \]

 \[
 \dot{b}_l = \frac{-i}{2\hbar} b_k V_{lk} e^{-i(\omega_{kl} - \omega)t}
 \]

 Numerically solve for the probability of being in state \(k \) and \(l \) for times \(t = 0 \) to \(t = 1 \) ps given that the system is in state \(k \) at \(t = 0 \). You can take the coupling to be \(V_{kl}/\hbar c = 100 \text{ cm}^{-1} \). Compare the behavior for detuning from resonance of \((\omega_{kl} - \omega)/2\pi c = 0 \text{ cm}^{-1} \) and 100 cm\(^{-1}\).

 (If you aren’t familiar with numerically solving differential equations, study your software’s implementation of the Runga-Kutta method).