1.204 Lecture 13

Dynamic programming:
Method
Resource allocation

Introduction

• Divide and conquer starts with the entire problem, divides it into subproblems and then combines them into a solution
 – This is a top-down approach
• Dynamic programming starts with the smallest, simplest subproblems and combines them in stages to obtain solutions to larger subproblems until we get the solution to the original problem
 – This is a bottom-up approach
• Dynamic programming is used much more than divide and conquer
 – It is more flexible and controllable
 – It is more efficient on most problems since it must consider far fewer combinations
Principle of optimality

• “Principle of optimality”:
 – In an optimal sequence of decisions or choices, each subsequence must also be optimal
 – For some problems, an optimal sequence may be found by making decisions one at a time and never making a mistake
 • True for greedy algorithms (except label correctors)
 – For many problems it’s not possible to make stepwise decisions based only on local information so that the sequence of decisions is optimal.
 • One way to solve such problems is to enumerate all possible decision sequences and choose the best
 • Dynamic programming can drastically reduce the amount of computation by avoiding sequences that cannot be optimal by the “principle of optimality”

Project selection example

• Suppose we have:
 – $4 million budget
 – 3 possible projects (e.g. flood control)
 • Each funded at $1 million increments from $0 to $4 million
 • Each increment produces a different marginal benefit
 – Dynamic programming problems are usually discrete, not continuous
• We want to find the plan that produces the maximum benefit
• Stages are the number of decisions to be made
 – We have 3 stages, since we have 3 projects
• States are the number of distinct possibilities
 – At each stage there are 5 states ($0, 1, 2, 3, 4 million)
Project selection formulation

- We build a multistage graph to represent this problem:
 - Source node at start of graph, representing ‘null’ initial stage
 - Set of nodes at each stage for each state
 - Sink node at end of graph, which is a collapsed representation of the final state
- Each node characterized by $V(i,j)$:
 - $V(i,j)$ is value (benefit) obtained up to (but not including) stage i by committing j resources
 - Each node also stores its predecessor node in $P(i)$
- Each arc is characterized by $E(m,n)$:
 - $E(m,n)$ is value obtained by spending n resources on project m

Project selection data

<table>
<thead>
<tr>
<th>Project 0</th>
<th>Project 1</th>
<th>Project 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment</td>
<td>Benefit</td>
<td>Investment</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>4</td>
</tr>
</tbody>
</table>

- In theory, projects could have dependencies, but in practice it’s an improbable model. In the example above:
 - Project 1’s benefits could depend on project 0 investment
 - But not on project 2 investment
 - Project 2’s benefits could depend on total project 0 and 1 investment
 - But not on either individually
- (There are some chip power management graphs with such dependencies)
Dynamic programming graph: feasible

Stage:
0 1 2 3
| Project 0 decisions | Project 1 decisions | Project 2 decisions |

0 1 2 3
| Project 0 decisions | Project 1 decisions | Project 2 decisions |

0 1 2 3
| Project 0 decisions | Project 1 decisions | Project 2 decisions |
Dynamic programming graph: feasible

Stage:

<table>
<thead>
<tr>
<th>Stage</th>
<th>Project 0 decisions</th>
<th>Project 1 decisions</th>
<th>Project 2 decisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dynamic programming graph: feasible

Stage:

<table>
<thead>
<tr>
<th>Stage</th>
<th>Project 0 decisions</th>
<th>Project 1 decisions</th>
<th>Project 2 decisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dynamic programming graph: feasible

Solution

- Generate graph in forward direction:
 - Start at source node
 - Compute $V(i,j)$ and $E(m,n)$ as graph is built
 - Keep track of predecessor $P(i)$ of each node that yields highest $V(i,j)$
 - This eliminates non-optimal subsequences ("pruning")
 - Eliminate infeasible arcs and nodes as graph is built
 - Rule is easy: Check budget constraint at each node; do not generate arcs or nodes that would violate it
 - End when sink node is reached from all nodes of previous stage
- Construct solution by tracing back from sink to source using predecessor variable
Multistage graph problem characteristics

• Multistage graph is the standard DP first example
 – Graph is reduced by applying feasibility constraint to eliminate many combinations
 • Can’t exceed resource limit
 – Each stage is independent of all previous stages
 • How you got to V(i,j) doesn’t matter
 • This limits the combinatorial aspect of the original problem
 • A naïve approach would have looked at all project combinations

• Principle of optimality:
 – “In an optimal sequence of decisions or choices, each subsequence must also be optimal”
 – In our example subsequences are optimal:
 • Node 0 to node 2 (trivially)
 • Node 0 to node 2 to node 10
 • Node 0 to node 2 to node 10 to node 11 (full sequence)

Complexity of multistage graph

• Complexity of well-behaved multistage graph:
 – M projects or stages
 – At each stage, there are ~n^2/2 comparisons to find V(i,j) from the incoming arcs
 • Where n is number of resource levels
 – This is O(Mn^2)
 – Horowitz and Sahni call it O(M+a)
 • Where a is number of arcs since they assume the graph has already been built and is available as input

• Complexity of worst case:
 – Worst case:
 • Different resource levels in each project, so number of nodes increases at each stage
 • High constraint (large resource limit), so no elimination of nodes
 • Number of nodes doubles in each stage
 • This is O(2^n)
 • Thus, complexity is O(min(Mn^2, 2^n))
Dynamic programming ‘curses’

- Dynamic programming (DP) isn’t natural for most problems
 - Most dynamic programming problems are \(O(2^n)\)
 - Stages and states have ‘curse of dimensionality’:
 - Stages and states can explode combinatorially
 - Challenge in DP formulation is to avoid or limit the curse...
 - Multistage graph is easiest
 - We’ll do a job scheduling DP next
 - Another example of using the multistage graph model
 - And then it gets harder…
 - We’ll do a set-based DP model for a knapsack problem
 - Sets are “standard model” for complex DP

Multistage graph Java implementation

- Build graph going forward
 - Don’t need graph data structure
 - Don’t need to create or store arcs
 - All information can be stored in nodes
 - Store predecessor of each node (implicit arc)
 - Source, next set of nodes and sink are special cases
 - Read off solution going backward from sink
 - Follow predecessors from sink to source
 - Subtract cumulative resources, profits at each step (arc) to
 recover the decision on each project
 - Allocate \(n+1\) nodes per stage if resource limit= \(n\)
 - If \(n=4\), need 5 nodes for resource level 0, 1, 2, 3, 4
 - Nested Node class holds profit, resource, predecessor
 - Java garbage collector will clean up Nodes not on optimal subsequences
 - No ‘predecessor’ will refer to them
public class MultiStageGraph {
 private static class Node {
 private int projNbr; // Project number
 private int cumResource; // Resource allocated so far
 private int cumProfit; // Profit so far
 private Node predecessor; // Previous node in graph
 public Node(int proj, int res, int prof, Node p) {
 projNbr = proj;
 cumResource = res;
 cumProfit = prof;
 predecessor = p;
 }
 }
 private int numProj; // No of projects
 private int n; // Max units of resource + 1
 private Node root; // First node in graph
 private Node sink; // Last node in graph
 public MultiStageGraph(int np, int n) {
 this.numProj = np;
 this.n = n; // root, sink null initially
 // See download for get, set...}
}

public void buildGraph(int[][] p) { // Profit by project
 // Store previous stage nodes; need at next stage
 Node[] prevStage = new Node[n];
 // Store current stage nodes
 Node[] currStage = new Node[n];
 // Stage 0 start node, units so far 0, profit so far 0
 root = new Node(0, 0, 0, null);
 Node currentNode = null;
 // Project (stage) 1 start nodes as special case,
 // since they have single arcs back to root
 for (int i = 0; i < n; i++) {
 // Stage 1 start node has stage 0 profit
 currentNode = new Node(1, i, p[0][i], root);
 prevStage[i] = currentNode;
 }
MultistageGraph: buildGraph() 2

// Stage 2 start nodes thru stage M-1 start nodes
for (int i = 2; i < numProj; i++) {
 // Loop, giving 0-> n resources to project
 for (int j = 0; j < n; j++) {
 currentNode = new Node(i, j, 0, null);
 currStage[j] = currentNode;
 for (int k = 0; k <= j; k++) { // Arcs from prev stage
 Node pastNode = prevStage[j - k];
 int profit = p[i-1][k];
 int cumProfit = profit + pastNode.cumProfit;
 if (cumProfit >= currentNode.cumProfit) {
 currentNode.cumProfit = cumProfit;
 currentNode.predecessor = pastNode;
 }
 }
 }
 // Copy current node array into previous node array
 for (int j = 0; j < n; j++) {
 prevStage[j] = currStage[j];
 }
}
// End buildGraph()
MultistageGraph: backwardPass()

```java
public int backwardPass() {
    System.out.println("Problem solution:");
    System.out.println(" Total profit: " + sink.cumProfit);
    System.out.println(" Total units: " + sink.cumResource + "\n");
    Node next = sink;
    Node current = sink.predecessor;

    while (current != null) {
        System.out.println("Project: " + current.projNbr);
        // Difference in units is project units assigned
        int units = next.cumResource - current.cumResource;
        // Difference in profit is project profit
        int profit = next.cumProfit - current.cumProfit;
        System.out.println(" Units: " + units);
        System.out.println(" Profit: " + profit);
        next = current;
        current = current.predecessor;
    }
    return sink.cumProfit;
}
```

// Better implementation would return 2-D array of (resource, profit) for each project

MultistageGraph: main()

```java
public static void main(String[] args) {
    int numProjects = 3;
    int maxResource = 4;
    int[][] p2 = {{0, 6, 8, 8, 10}, // Project 0 profits
                  {0, 5, 11, 16, 17}, // Project 1 profits
                  {0, 1, 4, 5, 6}, }; // Project 2 profits
    // Increment maxResource: e.g., if maxResource=4,
    // we have 5 decision levels {0,1,2,3,4}
    MultiStageGraph g2 =
            new MultiStageGraph(numProjects, ++maxResource);
    g2.buildGraph(p2);
    int totalProfit = g2.backwardPass();
    System.out.println("Total profit: " + totalProfit);
}
Summary

• Dynamic programming key concepts
  – Stages: Decision points
  – States: Decision options
  – Principle of optimality
    • “In an optimal sequence of decisions or choices, each subsequence must also be optimal”
  – Solution approach: create solution graph
    • Eliminate infeasible combinations at each stage
    • Prune suboptimal combinations at each stage
    • Track predecessor of optimal subsequences to each stage
    • (Can generate graph going forward or backward)
  – In most problems, DP is a heuristic solution approach
    • Eliminate/prune unlikely combinations but not provably suboptimal