Basics of Analysis with Antineutrinos
From Heat Producing Elements - K, U, Th in the Earth

IAP 2010, January 5 - 22

Earth, Atmospheric & Planetary Sciences
Massachusetts Institute of Technology

Session 4: January 21, 2010, 10 AM to Noon

Instructor Dr. Ila Pillalamarri
Course 12.091 Special Topics in Earth Sciences
Course Objectives

1) Relevance to antineutrino analysis of global concentration determination of radiogenic heat producing elements (HPE) by terrestrial heat flow studies and Bulk Silicate Earth (BSE) models, and unconventional models of the Earth’s core.

2) Basic radiation characteristics of heat producing elements (HPE):
 - Alpha, beta, gamma, neutrino and antineutrino radiations,
 - Basics of radiation detection concepts,
 - Special focus:
 - Antineutrino radiation detection,
 - Antineutrino radiation detection with directional sensitivity.
3) Relevance of existing large antineutrino detectors for probing the HPE in Earth’s deep interior:
Characteristics, research and contributions of the two existing antineutrino detectors – Sudbury Neutrino Observatory (SNO), Canada and Kamioka Liquid Scintillator Antineutrino Detector (KamLAND), Japan.

4) Proposed antineutrino detectors for probing the HPE in Earth’s deep interior with directional sensitivity. Tomography of the whole Earth for the localization of the HPE in the deep interior of the Earth. Need for mobile antineutrino detectors for tomography.

5) Considerations for dedicated antineutrino detectors to probe the Earth’s deep interior for the determination of concentrations of heat producing elements.
Jan 05: Room 54-312

Relevance to antineutrino analysis of global concentration determination of radiogenic heat producing elements (HPE) by terrestrial heat flow studies and Bulk Silicate Earth (BSE) models, and unconventional models of the Earth’s core.

Jan 19: Room 54-312

Basic radiation characteristics of heat producing elements (HPE):
- Alpha, beta, gamma, neutrino and antineutrino radiations,
- 40K decay characteristics, U and Th decay series

Basics of radiation detection concepts,

Special focus:
- Antineutrino radiation detection,
- Antineutrino radiation detection with directional sensitivity.
Jan 20: Room 54-312
Relevance of existing large antineutrino detectors for probing the HPE in Earth’s deep interior:
Characteristics, research and contributions of the two existing antineutrino detectors – Sudbury Neutrino Observatory (SNO), Canada and Kamioka Liquid Scintillator Antineutrino Detector (KamLAND), Japan.

Jan 21: Room 54-312
Proposed antineutrino detectors for probing the HPE in Earth’s deep interior with directional sensitivity. Tomography of the whole Earth for the localization of the HPE in the deep interior of the Earth. Need for mobile antineutrino detectors for tomography.
Visit to Earth Atmospheric & Planetary Sciences – Radiometric/Neutron Activation Analysis Laboratory (NW13-263).

Jan 22: Room 54-312
Considerations for dedicated antineutrino detectors to probe the Earth’s deep interior for the determination of concentrations of heat producing elements.
Conclusions.
Student Presentations.
The course work involves the following:

1. Class attendance and participation 25%
2. Reading assignments 25%
3. Homework assignments 15%
4. Student report 15%
5. Student presentation 15%

Required percentage to pass this course is 95%.
Course Overview

- Basics of
- Analysis with
 - Antineutrinos from
 - Heat Producing Elements K, U, Th
 - In the Earth
Session Objectives

- Proposed antineutrino detectors for probing the HPE in Earth’s deep interior with directional sensitivity.

- Tomography of the whole Earth for the localization of the HPE in the deep interior of the Earth.

- Need for mobile antineutrino detectors for tomography.
Some antineutrino detectors, recently proposed for probing the HPE in Earth’s deep interior

SNO+
BOREXINO
HANO (DOANO)
BNO
Practical antineutrino detectors were designed and tested for specific purposes for over fifty years.

The first successful detector design demonstrated the detection principle by inverse beta decay.

Powerful detectors are already built – SNO to study solar neutrinos, BOREXINO to study low Energy solar neutrinos, KamLAND to study neutrino oscillations from fission antineutrino sources, studying the Earth’s antineutrinos with the same experimental setup.
Antineutrino Detectors @ Continents & Oceans

- Antineutrino detectors located at different sites, by being on continental crust and at the interface to an oceanic crust, are expected to provide perspectives of distribution of U-Th in the Earth’s crust and mantle.
- Currently, there is strong interest to use the existing detectors initially built for physics studies, now to study the antineutrinos originating from the Earth to investigate the K, U, Th in deep interior of the Earth.
KamLAND already in operation, is the first antineutrino detector to study antineutrinos from the Earth.

SNO will be modified to SNO+ to study Earth’s antineutrinos.

BOREXINO is in preparation to study Earth’s antineutrinos.

Hanohano is in preparation to study Earth’s antineutrinos.
SNO+ is a proposed follow-up experiment to SNO. By replacing the heavy water in SNO with liquid scintillator, the SNO+ detector would be sensitive to lower energy antineutrinos generated in the Earth.

http://snoplus.phy.queensu.ca/about.html
http://snoplus.phy.queensu.ca/images.html
SNO+ antineutrino signal dominated by continental crust; checks basic geochemical ideas about the crust

SNO+ and the local geology
- Canadian Shield (also known as the North American Craton)
 - old, thick, well-understood continental crust
 - mining activities near Sudbury suggest that the very local geology is extremely well studied

SNO+ proposal is that constraining the local U, Th content in the surrounding rocks, it is possible to infer the mantle component in the SNO+ antineutrino signal. By subtracting off from the total signal the mantle component may be obtained, assuming core component to be insignificant.

http://www.ipp.ca/pdfs/SNOp_chen.pdf
Borexino is acronym for BORon Experiment. The project first detected solar neutrinos on 16 August 2007. The experiment is located at the Laboratori Nazionali del Gran Sasso near the town of L'Aquila, Italy. http://borex.lngs.infn.it/

Borexino is predominantly a particle physics experiment to study low energy (sub MeV) solar neutrinos.

For a detailed description of the detector refer to Nuclear Instrumentation and Methods A, ARXIV.ORG/ABS/PYHICS/0702162

Other goals of the experiment are detecting Boron-8, pp, pep and CNO solar neutrinos as well as antineutrinos from the Earth and nuclear power plants.

Thus BOREXINO is not a dedicated antineutrino detector for solely measuring the HPE concentrations from different shells of the Earth.
Hanohano is a deep ocean antineutrino observatory being developed at Hawaii. The 10 kT antineutrino detector is expected to be mobile, to be towed from place to place away from or near to nuclear reactors on the Earth.

A one-year deployment near Hawaii is expected to measure the flux of Th/U geo-neutrinos from the mantle to 25%. An exposure of four years is expected to measure the Th/U ratio to 10%.

Expected to measure or severely constrain the power of the hypothetical nuclear reactor at the center of the Earth’s core.

Ref.
http://neutrinos.llnl.gov/workshop/presentations/22_Learned.ppt
http://cdsweb.cern.ch/record/1000480/files/0611039.pdf?version=1
Low Energy Neutrino Astrophysics LENA

- Proposed LENA detector
- BOREXINO technology
- Liquid scintillator 45,000 ton PXE
- Cylindrical detector
 100 m length x 30 m diameter
- Photomultipliers 12,000 with 30% surface
- Possible locations
 Pyhasalmi, Pylos
- Propose to probe the Earth’s deep interior on the basis of the angular dependence of the geoneutrino flux.

Ref.: Probing the Earth’s interior with the LENA detector
Antineutrino signal of K, U, Th, whether the antineutrino detector is located on continent or in ocean, should

1) Identify K, U, Th uniquely, free of interferences

2) Measure K, U, Th abundances, totally for the entire Earth, and also individually for crust, mantle and core.

Directional detection sensitivity is required for independent measurements.
The individual HPE concentrations in different shells of the Earth are unknown so far.

Total concentration of the entire Earth is also unknown so far.

Measurement of the HPE concentrations in each Earth shell can be achieved by preserving the direction of the incident antineutrinos.
Some Antineutrino Detectors @ Continents & Oceans

<table>
<thead>
<tr>
<th>Detector</th>
<th>Region</th>
<th>Location</th>
<th>Detector Size Kilo Tonnes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borexino</td>
<td>Italy</td>
<td>Tunnel Continental Crust</td>
<td>0.1</td>
</tr>
<tr>
<td>KamLAND</td>
<td>Japan</td>
<td>Mine Island Arc</td>
<td>1</td>
</tr>
<tr>
<td>SNO+</td>
<td>Canada</td>
<td>Mine Continental Crust</td>
<td>1</td>
</tr>
<tr>
<td>Hanohano</td>
<td>Pacific Ocean</td>
<td>Ocean Oceanic Crust</td>
<td>10</td>
</tr>
<tr>
<td>Baksan</td>
<td>Baksan</td>
<td>Continental Crust</td>
<td>30</td>
</tr>
<tr>
<td>LENA</td>
<td>Finland</td>
<td>Continental Crust</td>
<td>50</td>
</tr>
<tr>
<td>EARTH</td>
<td>Tomography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRAFG</td>
<td>Radiometric Analysis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Next proceeding to

Antineutrino detection with incident directional sensitivity:
 Simulation studies of angular radial distribution of K, U, Th in the Earth

Tomography of the whole Earth for the localization of the HPE in the deep interior of the Earth:
 EARTH proposal
 GRAFG proposal
Theoretical simulation studies performed by Fields and Hochmuth [2004]:

- Ref.: Imaging the Earth’s Interior: the Angular Distribution of Terrestrial Neutrinos
- Importance of Imaging the Earth’s Interior with the Angular Distribution of antineutrinos from different shells prospects regarding antineutrino directional sensitivity was theorized by Fields and Hochmuth.
- The angular distribution of geoneutrinos are calculated, which opens a window on the differential radial distribution of terrestrial radionuclides. General formalism is developed for the neutrino angular distribution.
- Inverse transformation is presented which recovers the terrestrial radioisotope distribution given a measurement of the neutrino angular distribution.
- Thus, geoneutrinos not only allow a means to image the Earth’s interior, but offering a direct measure of the radioactive Earth, both
 - (1) revealing the Earth’s inner structure as probed by radionuclides, and
 - (2) allowing for a complete determination of the radioactive heat generation as a function of radius.
EARTH collaboration led by Prof. R. J. De Meijer proposed tomography of the Earth by antineutrino telescopes.

The aim of EARTH (Earth AntineutRino TomograpHy) is to map radiogenic heat sources in the Earth's Interior with ultimately an angular resolution of about 3 degrees.
According to De Meijer et al:

- The CMB is a very dynamic part of the Earth. It is a thin (~200km thick) interface between the core and the mantle.
- Due to subduction of crust and oceanic magma, the CMB may contain 40% of the Earth's radionuclides and hence radiogenic heat sources.
- Mapping of these heat sources therefore requires high resolution (~3°) antineutrino tomography.
According to the EARTH proposal:

- The first antenna is planned to be installed at Curacao, Dutch Antilles. Antennas are designed to contain a mass of about 4 kilotonnes of solid scintillation material.
- Contrary to the KamLAND detector or the ones planned for Borexino, LENA, Hawaii, or Baksan, all monolithic, spherical arrangements.
- The EARTH antennas will be modular and will consist of many modules, each containing a large number of rod-shaped detector units, containing small sized detectors, thus angular resolution can be achieved.
Earth AntineutRino TomographHy

EarTH Project

The Earth AntineutRino TomographHy programme aims at making a tomographic image of the radiogenic heat sources in the Earth’s interior by a system of ten geoneutrino telescopes with a combined angular resolution of 3°.

Anticipated spatial resolution dimension is ~3°, corresponding to about 300km for the centre of the Earth; 150 km at the CMB.

Each telescope will contain 4 ktonnes of detection material and will have at least 10 antennas consisting of many modules.
• Each EARTH telescope is designed to have 4kton of scintillator: three times the mass of KamLAND.

• With 4cm² diameter, 1m long detectors, 10 million detector units are required!

• Ten telescopes comprise a mass of 40kton: twice Superkamiokande
Earth Antineutrino Tomography
EarTH Project
Antineutrino detectors could be simpler to construct and operate than the current generation of detectors, which were built to investigate the basic physics of the neutrinos.

Bernstein et al [2008] and earlier Klimov et al [1994] showed the potential use of Cubic-meter-sized antineutrino detector for monitoring non intrusively, robustly, and automatically, and safeguard a wide variety of nuclear reactor types, including power reactors, research reactors, and plutonium production reactors.

Ref.

Meter cubed antineutrino detector diagram can be seen in the following references.

- A. Bernstein, N. S. Bowden, A. Misner, and T. Palmer,
 Monitoring the thermal power of nuclear reactors with a prototype cubic meter antineutrino detector,
 DOI: 10.1063/1.2899178
- A. Bernstein, Y. Wang, G. Gratta, T. West
 Nuclear reactor safeguards and monitoring with antineutrino detectors
 Experimental results from an antineutrino detector or cooperative monitoring of nuclear reactors
- Y. V. Klimov, V. Kopeikin, L. Mikaelyan, K. Ozerov, and V. Sinev,
GRAFG is an acronym for Geoneutrino Radiometric Analysis for Geosciences.
The GRAFG collaboration, during 2008 - 2009, for Deep Underground Science and Engineering Laboratory (DUSEL) Initial Suite of Experiments, proposed the following.

1) Antineutrino radiometric determination of K, U, Th abundances, independent of geophysical or geochemical models.

2) Use of cubic meter sized antineutrino detectors in modular form, with directional sensitivity.

3) Tomography of Earth’s shells by developing directional sensitivity for antineutrino analysis by Cherenkov radiation methodology.

4) Initially determine the total global radioactivity of the entire Earth which is cost and time effective.

5) Do not assume insignificant radioactivity contribution from the core of the Earth.

Ref.:
Radiometric analysis in general means measurement of source strengths of the elements from their radio-isotopes. Geoneutrino radiometric analysis is analogous to the well known gamma-ray radiometric analysis of K, Th, U to measure the concentrations of K, Th, U in (rock) samples. In the present context, geoneutrinos are used instead of gamma-rays. Source strengths are used for radiometric analysis.
Figure. Cross-sectional schematic of the conical field of view dividing the interior regions of the Earth from the detection point of view. The cones C1, C2, C3, C4 completely enclose the inner core, outer core, lower mantle, upper mantle regions in the interior of the Earth. - GRAFG
Talked about the proposed antineutrino detectors
- SNO+
- BOREXINO
- Hanohano
- Baksan

for probing the HPE in Earth’s deep interior.

Talked about the proposed antineutrino detector for tomography of the whole Earth for the localization of the HPE in the deep interior of the Earth.
- EARTH
- GRAFG

Talked about need for mobile antineutrino detectors for tomography
- Meter cubed detector
- GRAFG
1. Write a report about your understanding of analysis with antineutrinos from heat producing elements – K, U, Th in the Earth.

2. Write a report about your understanding of different antineutrino detectors.

The report should be about 1-2 pages.
Directional sensitivity for detection of Earth’s Antineutrinos

- B. D. Fields and K. A. Hochmuth
 Imaging the Earth’s Interior: the Angular Distribution of Terrestrial Neutrinos
 (31 May 2004)

- Domogatsky, G., Kopeikin, V., Mikaelyan, L., Sinev, V.,
 Can Radiogenic Heat Sources Inside the Earth be located by their Antineutrino incoming Directions?,
 Phys. Atom. Nucl. 69 (2006) 1894 - 1898,
 (12 Nov 2004)
Directional sensitivity for detection of Earth’s Antineutrinos

- M. Batygov,
 Vertex reconstruction improvement in KamLAND and prospects for geoneutrino directionality analysis,
 http://www.phys.hawaii.edu/~jelena/post/hnsd/Batygov_directionality.ppt

- W. Winter 3 July 2006
 Neutrino tomography,
 Learning about the Earth’s interior using the propagation of neutrinos,
References

BOREXINO

- BOREXINO at LNGS, Italy
 http://www.nu.to.infn.it/exp/all/borexino
 http://borex.lngs.infn.it/

- The Borexino detector at the Laboratori Nazionali del Gran Sasso
 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
 Volume 600, Issue 3, 11 March 2009, Pages 568-593
References

EARTH

- R.J. de Meijer, F.D. Smit, F.D. Brooks, R.W. Fearick, H.J. Wörtche
 Towards Earth AntineutRino TomograpHy (EARTH)
 Neutrino Geophysics Conference, Honolulu, 14-16 December, 2005

 Timmermans,
 EARTH: 3-D geoneutrino Tomography,
 http://www.phys.hawaii.edu/~sdye/demeijer.html

- R.J. de Meijer, and W. van Westrenen,
 The feasibility and implications of nuclear georeactors in Earth’s core-mantle
 boundary region,
References

GRAFG

- Geoneutrino Radiometric Analysis For Geosciences [GRAFG]
HanoHano

- J. Learned
 A Deep Ocean Anti-Neutrino Observatory
 Neutrinos.llnl.gov/workshop/presentations/22_Learned.ppt
- S.T. Dye et al.,
 Earth Radioactivity Measurements with a Deep Ocean Anti-neutrino Observatory,
 Earth Moon Planets 99 (2006) 241-252,
- S. T. Dye
 Science Potential of a Deep Ocean Antineutrino Observatory
 http://cdsweb.cern.ch/record/1000480/files/0611039.pdf?version=1
References

LENA

K. A. Hochmuth, F. v. Feilitzsch, W. Potzel, M. Wurm, B. D. Fields,

Low Energy Neutrino Astrophysics detector
Probing the Earth’s interior with the LENA detector

References

Meter cubed antineutrino detector

- A. Bernstein, N. S. Bowden, A. Misner, and T. Palmer,
 Monitoring the thermal power of nuclear reactors with a prototype cubic meter antineutrino detector,
 DOI: 10.1063/1.2899178

- A. Bernstein, Y. Wang, G. Gratta, T. West
 Nuclear reactor safeguards and monitoring with antineutrino detectors

 Experimental results from an antineutrino detector for cooperative monitoring of nuclear reactors

- Y. V. Klimov, V. Kopeikin, L. Mikaelyan, K. Ozerov, and V. Sinev,
References

SNO+

http://www.ipp.ca/pdfs/SNOp_chen.pdf
http://snoplus.phy.queensu.ca/about.html
http://snoplus.phy.queensu.ca/images.html
Acknowledgements

The support for offering this course during IAP 2010, and publication on the MIT OpenCourseWare by

- Massachusetts Institute of Technology, Cambridge, MA, USA
- The NORM Group Organization, Cambridge, USA and Guelph, Canada

is acknowledged.
END of Fourth SESSION
January (IAP) 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.