Lectures 22/23: Expected Present Discounted Values

- EPDV
- Bond Prices
- Stock Prices
EPDV

• Figure 14-3
• $1/(1+i(t))$: present discounted value of one dollar received next year
• An asset that expects to pay: $d(t)$, $d^e(t+1)$, …. has a EPDV of:

$$V = d(t) + \frac{d^e(t+1)}{(1+i(t))} + \frac{d^e(t+2)}{(1+i(t))(1+i^e(t+1))} + \ldots.$$
Using Present Values

• Two general principles:
 – V rises with an increase in $d^e(t+s)$
 – V falls with an increase in $i^e(t+s)$

$$V = d(t) + \frac{d^e(t+1)}{(1+i(t))} + \frac{d^e(t+2)}{(1+i(t))(1+i^e(t+1))} + \ldots.$$
Examples

\[V = d(t) + \frac{d^e(t+1)}{(1+i(t))} + \frac{d^e(t+2)}{((1+i(t))(1+i^e(t+1)))} + \ldots \]

If \(i^e(t+s) = i \) and \(d^e(t+s) = d \)

\[V = d \left[1 + \frac{1}{(1+i)} + \frac{1}{(1+i)^2} + \ldots + \frac{1}{(1+i)^{n-1}} \right] \]

\[V = d \left[1 - \frac{1}{(1+i)^n} \right] / \left[1 - \frac{1}{(1+i)} \right] \]

Example: Lottery prize of $1m paid in 20 installments of $50k; if \(i=6\% \) =>

\[V = 50,000 \times \frac{0.688}{0.067} = 608,000 \]

Note: If \(i=0 \) => \(V = \Sigma d = n \times d = 1m \)
Examples

\[V = d \left[1 - \frac{1}{(1+i)^n} \right] / \left[1 - \frac{1}{(1+i)} \right] \]

Example: A consol \(n \rightarrow \infty \), payments start next year

\[V = \frac{d}{(1+i)} \left[\frac{1}{i/(1+i)} \right] = \frac{d}{i} \]
If \(d = $10 \) and \(i = 0.05 \) \(\Rightarrow \) \(C = $200 \)